File size: 27,590 Bytes
78df1b1
 
d911096
 
2ce295b
9847c07
 
2ce295b
fa02329
78df1b1
 
9847c07
78df1b1
9847c07
78df1b1
 
9847c07
d911096
9847c07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78df1b1
9847c07
 
 
40bec0d
9c259e8
9847c07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78df1b1
9847c07
 
 
 
 
 
9c259e8
9847c07
 
 
 
 
 
 
 
 
 
78df1b1
9847c07
78df1b1
9847c07
78df1b1
9847c07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78df1b1
9c259e8
 
9847c07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c259e8
 
9847c07
 
 
 
 
 
 
78df1b1
9847c07
 
d911096
 
9847c07
 
 
 
 
d911096
 
 
 
9847c07
d911096
9847c07
 
78df1b1
9847c07
78df1b1
d911096
9c259e8
d911096
 
 
9847c07
 
 
 
 
 
 
 
 
 
78df1b1
 
9847c07
d911096
 
 
78df1b1
d911096
 
 
 
 
 
78df1b1
d911096
 
9847c07
 
78df1b1
d911096
 
78df1b1
d911096
78df1b1
d911096
 
 
 
 
 
 
 
 
 
 
 
 
78df1b1
 
d911096
 
 
 
78df1b1
9847c07
 
2ce295b
9847c07
 
 
 
2ce295b
9847c07
2ce295b
9847c07
 
78df1b1
9847c07
 
78df1b1
2ce295b
78df1b1
2ce295b
 
 
9847c07
 
 
 
 
 
 
 
 
 
78df1b1
 
9847c07
2ce295b
9847c07
 
78df1b1
9847c07
 
2ce295b
9847c07
 
 
 
2ce295b
9847c07
2ce295b
9847c07
 
78df1b1
9847c07
78df1b1
2ce295b
78df1b1
2ce295b
 
 
9847c07
 
 
 
 
 
 
 
 
 
78df1b1
 
9847c07
2ce295b
9847c07
 
78df1b1
9847c07
2ce295b
9847c07
 
 
 
2ce295b
9847c07
2ce295b
9847c07
 
78df1b1
9847c07
78df1b1
2ce295b
78df1b1
2ce295b
 
 
 
9847c07
2ce295b
9847c07
 
 
 
 
 
 
 
 
78df1b1
 
9847c07
2ce295b
9847c07
 
78df1b1
2ce295b
 
 
 
78df1b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ce295b
 
 
 
 
 
 
 
78df1b1
2ce295b
 
 
 
9847c07
2ce295b
9847c07
 
78df1b1
9847c07
78df1b1
2ce295b
78df1b1
2ce295b
 
 
9847c07
 
 
 
 
 
 
 
 
 
78df1b1
 
9847c07
2ce295b
9847c07
 
78df1b1
9847c07
2ce295b
 
9847c07
 
 
2ce295b
 
 
 
 
9847c07
2ce295b
9847c07
 
78df1b1
9847c07
78df1b1
2ce295b
78df1b1
2ce295b
 
 
9847c07
 
 
 
 
 
 
 
 
 
78df1b1
 
9847c07
2ce295b
9847c07
 
78df1b1
9847c07
2ce295b
 
 
9847c07
 
 
78df1b1
2ce295b
 
 
 
 
 
 
78df1b1
2ce295b
 
78df1b1
2ce295b
 
 
 
 
 
78df1b1
9847c07
 
 
 
78df1b1
9847c07
78df1b1
2ce295b
78df1b1
2ce295b
 
 
9847c07
 
 
 
 
 
 
 
 
 
78df1b1
 
9847c07
2ce295b
9847c07
 
 
 
 
 
78df1b1
 
9847c07
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
from diffusers import StableDiffusionPipeline, StableDiffusionInpaintPipeline, StableDiffusionInstructPix2PixPipeline
from diffusers import EulerAncestralDiscreteScheduler
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
from controlnet_aux import OpenposeDetector, MLSDdetector, HEDdetector

from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPSegProcessor, CLIPSegForImageSegmentation
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation

import os
import random
import torch
import cv2
import uuid
from PIL import Image
import numpy as np
from pytorch_lightning import seed_everything

def get_new_image_name(org_img_name, func_name="update"):
    head_tail = os.path.split(org_img_name)
    head = head_tail[0]
    tail = head_tail[1]
    name_split = tail.split('.')[0].split('_')
    this_new_uuid = str(uuid.uuid4())[0:4]
    if len(name_split) == 1:
        most_org_file_name = name_split[0]
        recent_prev_file_name = name_split[0]
        new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name)
    else:
        assert len(name_split) == 4
        most_org_file_name = name_split[3]
        recent_prev_file_name = name_split[0]
        new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name)
    return os.path.join(head, new_file_name)


class MaskFormer:
    def __init__(self, device):
        self.device = device
        self.processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined", torch_dtype=torch.float16)
        self.model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined", torch_dtype=torch.float16).to(device)

    def inference(self, image_path, text):
        threshold = 0.5
        min_area = 0.02
        padding = 20
        original_image = Image.open(image_path)
        image = original_image.resize((512, 512))
        inputs = self.processor(text=text, images=image, padding="max_length", return_tensors="pt",).to(self.device)
        with torch.no_grad():
            outputs = self.model(**inputs)
        mask = torch.sigmoid(outputs[0]).squeeze().cpu().numpy() > threshold
        area_ratio = len(np.argwhere(mask)) / (mask.shape[0] * mask.shape[1])
        if area_ratio < min_area:
            return None
        true_indices = np.argwhere(mask)
        mask_array = np.zeros_like(mask, dtype=bool)
        for idx in true_indices:
            padded_slice = tuple(slice(max(0, i - padding), i + padding + 1) for i in idx)
            mask_array[padded_slice] = True
        visual_mask = (mask_array * 255).astype(np.uint8)
        image_mask = Image.fromarray(visual_mask)
        return image_mask.resize(original_image.size)

class ImageEditing:
    def __init__(self, device):
        print("Initializing StableDiffusionInpaint to %s" % device)
        self.device = device
        self.mask_former = MaskFormer(device=self.device)
        self.inpainting = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16).to(device)

    def remove_part_of_image(self, input):
        image_path, to_be_removed_txt = input.split(",")
        print(f'remove_part_of_image: to_be_removed {to_be_removed_txt}')
        return self.replace_part_of_image(f"{image_path},{to_be_removed_txt},background")

    def replace_part_of_image(self, input):
        image_path, to_be_replaced_txt, replace_with_txt = input.split(",")
        print(f'replace_part_of_image: replace_with_txt {replace_with_txt}')
        original_image = Image.open(image_path)
        original_size = original_image.size
        mask_image = self.mask_former.inference(image_path, to_be_replaced_txt)
        updated_image = self.inpainting(prompt=replace_with_txt, image=original_image.resize((512,512)), mask_image=mask_image.resize((512,512))).images[0]
        updated_image_path = get_new_image_name(image_path, func_name="replace-something")
        updated_image = updated_image.resize(original_size)
        updated_image.save(updated_image_path)
        return updated_image_path

class Pix2Pix:
    def __init__(self, device):
        print("Initializing Pix2Pix to %s" % device)
        self.device = device
        self.pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained("timbrooks/instruct-pix2pix", torch_dtype=torch.float16, safety_checker=None).to(device)
        self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config)

    def inference(self, inputs):
        """Change style of image."""
        print("===>Starting Pix2Pix Inference")
        image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
        original_image = Image.open(image_path)
        image = self.pipe(instruct_text,image=original_image,num_inference_steps=40,image_guidance_scale=1.2,).images[0]
        updated_image_path = get_new_image_name(image_path, func_name="pix2pix")
        image.save(updated_image_path)
        return updated_image_path

class T2I:
    def __init__(self, device):
        print("Initializing T2I to %s" % device)
        self.device = device
        self.pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
        self.text_refine_tokenizer = AutoTokenizer.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion", torch_dtype=torch.float16)
        self.text_refine_model = AutoModelForCausalLM.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion", torch_dtype=torch.float16)
        self.text_refine_gpt2_pipe = pipeline("text-generation", model=self.text_refine_model, tokenizer=self.text_refine_tokenizer, device=self.device, torch_dtype=torch.float16)
        self.pipe.to(device)

    def inference(self, text):
        image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png")
        refined_text = self.text_refine_gpt2_pipe(text)[0]["generated_text"]
        print(f'{text} refined to {refined_text}')
        image = self.pipe(refined_text).images[0]
        image.save(image_filename)
        print(f"Processed T2I.run, text: {text}, image_filename: {image_filename}")
        return image_filename

class ImageCaptioning:
    def __init__(self, device):
        print("Initializing ImageCaptioning to %s" % device)
        self.device = device
        self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base", torch_dtype=torch.float16)
        self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base", torch_dtype=torch.float16).to(self.device)

    def inference(self, image_path):
        inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device)
        out = self.model.generate(**inputs)
        captions = self.processor.decode(out[0], skip_special_tokens=True)
        return captions

class image2canny:
    def __init__(self):
        print("Direct detect canny.")
        self.low_threshold = 100
        self.high_threshold = 200

    def inference(self, inputs):
        print("===>Starting image2canny Inference")
        image = Image.open(inputs)
        image = np.array(image)
        canny = cv2.Canny(image, self.low_threshold, self.high_threshold)
        canny = canny[:, :, None]
        canny = np.concatenate([canny, canny, canny], axis=2)
        canny = Image.fromarray(canny)
        updated_image_path = get_new_image_name(inputs, func_name="edge")
        canny.save(updated_image_path)
        return updated_image_path

class canny2image:
    def __init__(self, device):
        self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-canny", torch_dtype=torch.float16)
        self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, torch_dtype=torch.float16
        )
        self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
        self.pipe.to(device)
        self.seed = -1
        self.a_prompt = 'best quality, extremely detailed'
        self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'

    def inference(self, inputs):
        print("===>Starting canny2image Inference")
        image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
        image = Image.open(image_path)
        self.seed = random.randint(0, 65535)
        seed_everything(self.seed)
        prompt = instruct_text + ', ' + self.a_prompt
        image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, guidance_scale=9.0).images[0]
        updated_image_path = get_new_image_name(image_path, func_name="canny2image")
        image.save(updated_image_path)
        return updated_image_path

class image2line:
    def __init__(self):
        self.detector = MLSDdetector.from_pretrained('lllyasviel/ControlNet')

    def inference(self, inputs):
        print("===>Starting image2line Inference")
        image = Image.open(inputs)
        mlsd = self.detector(image)
        updated_image_path = get_new_image_name(inputs, func_name="line-of")
        mlsd.save(updated_image_path)
        return updated_image_path

class line2image:
    def __init__(self, device):
        print("Initialize the line2image model...")
        self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-mlsd", torch_dtype=torch.float16)
        self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, torch_dtype=torch.float16
        )
        self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
        self.pipe.to(device)
        self.seed = -1
        self.a_prompt = 'best quality, extremely detailed'
        self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'

    def inference(self, inputs):
        print("===>Starting line2image Inference")
        image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
        image = Image.open(image_path)
        self.seed = random.randint(0, 65535)
        seed_everything(self.seed)
        prompt = instruct_text + ', ' + self.a_prompt
        image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, guidance_scale=9.0).images[0]
        updated_image_path = get_new_image_name(image_path, func_name="line2image")
        image.save(updated_image_path)
        return updated_image_path

class image2hed:
    def __init__(self):
        print("Direct detect soft HED boundary...")
        self.detector = HEDdetector.from_pretrained('lllyasviel/ControlNet')

    def inference(self, inputs):
        print("===>Starting image2hed Inference")
        image = Image.open(inputs)
        hed = self.detector(image)
        updated_image_path = get_new_image_name(inputs, func_name="hed-boundary")
        hed.save(updated_image_path)
        return updated_image_path

class hed2image:
    def __init__(self, device):
        print("Initialize the hed2image model...")
        self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-hed", torch_dtype=torch.float16)
        self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, torch_dtype=torch.float16
        )
        self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
        self.pipe.to(device)
        self.seed = -1
        self.a_prompt = 'best quality, extremely detailed'
        self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'

    def inference(self, inputs):
        print("===>Starting hed2image Inference")
        image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
        image = Image.open(image_path)
        self.seed = random.randint(0, 65535)
        seed_everything(self.seed)
        prompt = instruct_text + ', ' + self.a_prompt
        image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, guidance_scale=9.0).images[0]
        updated_image_path = get_new_image_name(image_path, func_name="hed2image")
        image.save(updated_image_path)
        return updated_image_path

class image2scribble:
    def __init__(self):
        print("Direct detect scribble.")
        self.detector = HEDdetector.from_pretrained('lllyasviel/ControlNet')

    def inference(self, inputs):
        print("===>Starting image2scribble Inference")
        image = Image.open(inputs)
        scribble = self.detector(image, scribble=True)
        updated_image_path = get_new_image_name(inputs, func_name="scribble")
        scribble.save(updated_image_path)
        return updated_image_path

class scribble2image:
    def __init__(self, device):
        self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-scribble", torch_dtype=torch.float16)
        self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, torch_dtype=torch.float16
        )
        self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
        self.pipe.to(device)
        self.seed = -1
        self.a_prompt = 'best quality, extremely detailed'
        self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'

    def inference(self, inputs):
        print("===>Starting scribble2image Inference")
        image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
        image = Image.open(image_path)
        self.seed = random.randint(0, 65535)
        seed_everything(self.seed)
        prompt = instruct_text + ', ' + self.a_prompt
        image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,guidance_scale=9.0).images[0]
        updated_image_path = get_new_image_name(image_path, func_name="scribble2image")
        image.save(updated_image_path)
        return updated_image_path

class image2pose:
    def __init__(self):
        self.detector = OpenposeDetector.from_pretrained('lllyasviel/ControlNet')

    def inference(self, inputs):
        print("===>Starting image2pose Inference")
        image = Image.open(inputs)
        pose = self.detector(image)
        updated_image_path = get_new_image_name(inputs, func_name="human-pose")
        pose.save(updated_image_path)
        return updated_image_path

class pose2image:
    def __init__(self, device):
        self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-openpose", torch_dtype=torch.float16)
        self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, torch_dtype=torch.float16
        )
        self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
        self.pipe.to(device)
        self.num_inference_steps = 20
        self.seed = -1
        self.unconditional_guidance_scale = 9.0
        self.a_prompt = 'best quality, extremely detailed'
        self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'

    def inference(self, inputs):
        print("===>Starting pose2image Inference")
        image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
        image = Image.open(image_path)
        self.seed = random.randint(0, 65535)
        seed_everything(self.seed)
        prompt = instruct_text + ', ' + self.a_prompt
        image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, guidance_scale=9.0).images[0]
        updated_image_path = get_new_image_name(image_path, func_name="pose2image")
        image.save(updated_image_path)
        return updated_image_path

class image2seg:
    def __init__(self):
        print("Initialize image2segmentation Inference")
        self.image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
        self.image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small")

        self.ade_palette = [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
                    [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
                    [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
                    [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
                    [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
                    [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
                    [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
                    [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
                    [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
                    [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
                    [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
                    [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
                    [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
                    [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
                    [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
                    [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
                    [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
                    [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
                    [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
                    [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
                    [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
                    [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
                    [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
                    [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
                    [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
                    [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
                    [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
                    [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
                    [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
                    [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
                    [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
                    [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
                    [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
                    [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
                    [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
                    [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
                    [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
                    [102, 255, 0], [92, 0, 255]]

    def inference(self, inputs):
        image = Image.open(inputs)
        pixel_values = self.image_processor(image, return_tensors="pt").pixel_values
        with torch.no_grad():
            outputs = self.image_segmentor(pixel_values)
        seg = self.image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
        color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)  # height, width, 3
        palette = np.array(self.ade_palette)
        for label, color in enumerate(palette):
            color_seg[seg == label, :] = color
        color_seg = color_seg.astype(np.uint8)
        segmentation = Image.fromarray(color_seg)
        updated_image_path = get_new_image_name(inputs, func_name="segmentation")
        segmentation.save(updated_image_path)
        return updated_image_path

class seg2image:
    def __init__(self, device):
        self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-seg", torch_dtype=torch.float16)
        self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, torch_dtype=torch.float16
        )
        self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
        self.pipe.to(device)
        self.seed = -1
        self.a_prompt = 'best quality, extremely detailed'
        self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'

    def inference(self, inputs):
        print("===>Starting seg2image Inference")
        image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
        image = Image.open(image_path)
        self.seed = random.randint(0, 65535)
        seed_everything(self.seed)
        prompt = instruct_text + ', ' + self.a_prompt
        image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, guidance_scale=9.0).images[0]
        updated_image_path = get_new_image_name(image_path, func_name="segment2image")
        image.save(updated_image_path)
        return updated_image_path

class image2depth:
    def __init__(self):
        print("initialize depth estimation")
        self.depth_estimator = pipeline('depth-estimation')

    def inference(self, inputs):
        image = Image.open(inputs)
        depth = self.depth_estimator(image)['depth']
        depth = np.array(depth)
        depth = depth[:, :, None]
        depth = np.concatenate([depth, depth, depth], axis=2)
        depth = Image.fromarray(depth)
        updated_image_path = get_new_image_name(inputs, func_name="depth")
        depth.save(updated_image_path)
        return updated_image_path

class depth2image:
    def __init__(self, device):
        self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-depth", torch_dtype=torch.float16)
        self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, torch_dtype=torch.float16
        )
        self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
        self.pipe.to(device)
        self.seed = -1
        self.a_prompt = 'best quality, extremely detailed'
        self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'

    def inference(self, inputs):
        print("===>Starting depth2image Inference")
        image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
        image = Image.open(image_path)
        self.seed = random.randint(0, 65535)
        seed_everything(self.seed)
        prompt = instruct_text + ', ' + self.a_prompt
        image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, guidance_scale=9.0).images[0]
        updated_image_path = get_new_image_name(image_path, func_name="depth2image")
        image.save(updated_image_path)
        return updated_image_path

class image2normal:
    def __init__(self):
        print("normal estimation")
        self.depth_estimator = pipeline("depth-estimation", model="Intel/dpt-hybrid-midas")
        self.bg_threhold = 0.4

    def inference(self, inputs):
        image = Image.open(inputs)
        original_size = image.size
        image = self.depth_estimator(image)['predicted_depth'][0]
        image = image.numpy()
        image_depth = image.copy()
        image_depth -= np.min(image_depth)
        image_depth /= np.max(image_depth)

        x = cv2.Sobel(image, cv2.CV_32F, 1, 0, ksize=3)
        x[image_depth < self.bg_threhold] = 0

        y = cv2.Sobel(image, cv2.CV_32F, 0, 1, ksize=3)
        y[image_depth < self.bg_threhold] = 0

        z = np.ones_like(x) * np.pi * 2.0
        image = np.stack([x, y, z], axis=2)
        image /= np.sum(image ** 2.0, axis=2, keepdims=True) ** 0.5
        image = (image * 127.5 + 127.5).clip(0, 255).astype(np.uint8)
        image = Image.fromarray(image)
        image = image.resize(original_size)
        updated_image_path = get_new_image_name(inputs, func_name="normal-map")
        image.save(updated_image_path)
        return updated_image_path

class normal2image:
    def __init__(self, device):
        self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-normal", torch_dtype=torch.float16)
        self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, torch_dtype=torch.float16
        )
        self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
        self.pipe.to(device)
        self.seed = -1
        self.a_prompt = 'best quality, extremely detailed'
        self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'

    def inference(self, inputs):
        print("===>Starting normal2image Inference")
        image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
        image = Image.open(image_path)
        self.seed = random.randint(0, 65535)
        seed_everything(self.seed)
        prompt = instruct_text + ', ' + self.a_prompt
        image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, guidance_scale=9.0).images[0]
        updated_image_path = get_new_image_name(image_path, func_name="normal2image")
        image.save(updated_image_path)
        return updated_image_path

class BLIPVQA:
    def __init__(self, device):
        print("Initializing BLIP VQA to %s" % device)
        self.device = device
        self.processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base", torch_dtype=torch.float16)
        self.model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base", torch_dtype=torch.float16).to(self.device)

    def get_answer_from_question_and_image(self, inputs):
        image_path, question = inputs.split(",")
        raw_image = Image.open(image_path).convert('RGB')
        print(F'BLIPVQA :question :{question}')
        inputs = self.processor(raw_image, question, return_tensors="pt").to(self.device)
        out = self.model.generate(**inputs)
        answer = self.processor.decode(out[0], skip_special_tokens=True)
        return answer