CoNR / README.md
p2oileen's picture
change README
72aa08a
|
raw
history blame
3.39 kB

CoNR: Collaborative Neural Rendering using Anime Character Sheets


HomePage | Colab | arXiv

image

Introduction

This project is the official implement of Collaborative Neural Rendering using Anime Character Sheets, which aims to genarate vivid dancing videos from hand-drawn anime character sheets(ACS). Watch more demos in our HomePage. Contributors:

Usage

Prerequisites

  • NVIDIA GPU + CUDA + CUDNN
  • Python 3.6

Installation

  • Clone this repository
git clone https://github.com/megvii-research/CoNR
  • Dependencies

To install all the dependencies, please run the following commands.

cd CoNR
pip install -r requirements.txt
  • Download Weights Download weights from Google Drive. Alternatively, you can download from Baidu Netdisk (password:RDxc).
mkdir weights && cd weights
wget https://drive.google.com/file/d/1M1LEpx70tJ72AIV2TQKr6NE_7mJ7tLYx/view?usp=sharing
wget https://drive.google.com/file/d/1YvZy3NHkJ6gC3pq_j8agcbEJymHCwJy0/view?usp=sharing
wget https://drive.google.com/file/d/1AOWZxBvTo9nUf2_9Y7Xe27ZFQuPrnx9i/view?usp=sharing
wget https://drive.google.com/file/d/19jM1-GcqgGoE1bjmQycQw_vqD9C5e-Jm/view?usp=sharing

Prepare inputs

We prepared two Ultra-Dense Pose sequences for two characters, you can generate more UDPs via 3D models and motions. Baidu Netdisk (password:RDxc)

# for short hair girl
wget https://drive.google.com/file/d/11HMSaEkN__QiAZSnCuaM6GI143xo62KO/view?usp=sharing
unzip short_hair.zip
mv short_hair/ poses/

# for double ponytail girl
wget https://drive.google.com/file/d/1WNnGVuU0ZLyEn04HzRKzITXqib1wwM4Q/view?usp=sharing
unzip double_ponytail.zip
mv double_ponytail/ poses/

We provide sample inputs of anime character sheets, you can also draw more by yourself.

# for short hair girl
wget https://drive.google.com/file/d/1r-3hUlENSWj81ve2IUPkRKNB81o9WrwT/view?usp=sharing
unzip short_hair_images.zip
mv short_hair_images/ character_sheet/

# for double ponytail girl
wget https://drive.google.com/file/d/1XMrJf9Lk_dWgXyTJhbEK2LZIXL9G3MWc/view?usp=sharing
unzip double_ponytail_images.zip
mv double_ponytail_images/ character_sheet/

RUN!

We provide two ways: with web UI or via terminal.

streamlit run streamlit.py --server_port=8501

then open your browser and visit localhost:8501, follow the instructions to genarate video.

  • via terminal
mkdir {dir_to_save_result}

python3 -m torch.distributed.launch \
--nproc_per_node=1 train.py --mode=test \
--world_size=1 --dataloaders=2 \
--test_input_poses_images={dir_to_poses} \
--test_input_person_images={dir_to_character_sheet} \
--test_output_dir={dir_to_save_result} \
--test_checkpoint_dir={dir_to_weights}

ffmpeg -r 30 -y -i {dir_to_save_result}/%d.png -r 30 -c:v libx264 output.mp4 -r 30

Citation

@article{lin2022conr,
  title={Collaborative Neural Rendering using Anime Character Sheets},
  author={Lin, Zuzeng and Huang, Ailin and Huang, Zhewei and Hu, Chen and Zhou, Shuchang},
  journal={arXiv preprint arXiv:2207.05378},
  year={2022}
}