Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,035 Bytes
70f55b7 e47ff0d f8868b5 70f55b7 ff84eba e47ff0d 70f55b7 f8868b5 e47ff0d f8868b5 e47ff0d a5f564c e47ff0d f8868b5 e47ff0d a4bee0b e47ff0d a4bee0b e47ff0d ff84eba 70f55b7 ff84eba 70f55b7 ff84eba f8868b5 e47ff0d f8868b5 70f55b7 f8868b5 e47ff0d 70f55b7 e47ff0d a4bee0b e47ff0d 70f55b7 f8868b5 e47ff0d a4bee0b e47ff0d a4bee0b 70f55b7 e47ff0d 70f55b7 a4bee0b e47ff0d a4bee0b 70f55b7 e47ff0d 70f55b7 e47ff0d f8868b5 e47ff0d 70f55b7 e47ff0d a4bee0b e47ff0d f8868b5 e47ff0d f8868b5 e47ff0d f8868b5 e47ff0d f8868b5 e47ff0d 70f55b7 e47ff0d f8868b5 70f55b7 ff84eba 70f55b7 f8868b5 ff84eba f8868b5 e47ff0d f8868b5 e47ff0d f8868b5 e47ff0d f8868b5 ff84eba f8868b5 ff84eba f8868b5 e47ff0d f8868b5 ff84eba f8868b5 ff84eba f8868b5 e47ff0d f8868b5 e47ff0d f8868b5 e47ff0d ff84eba f8868b5 e47ff0d f8868b5 ff84eba f8868b5 ff84eba f8868b5 e47ff0d f8868b5 e47ff0d a4bee0b e47ff0d 70f55b7 e47ff0d f8868b5 e47ff0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import spaces
import os
import random
import math
import torch
import numpy as np
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import (
StableDiffusionXLPipeline,
)
from diffusers.schedulers.scheduling_euler_ancestral_discrete import (
EulerAncestralDiscreteScheduler,
)
from diffusers.models.attention_processor import AttnProcessor2_0
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
try:
from dotenv import load_dotenv
load_dotenv()
except:
print("failed to import dotenv (this is not a problem on the production)")
device = "cuda" if torch.cuda.is_available() else "cpu"
HF_TOKEN = os.environ.get("HF_TOKEN")
assert HF_TOKEN is not None
IMAGE_MODEL_REPO_ID = os.environ.get(
"IMAGE_MODEL_REPO_ID", "OnomaAIResearch/Illustrious-xl-early-release-v0"
)
DART_V3_REPO_ID = os.environ.get("DART_V3_REPO_ID", None)
assert DART_V3_REPO_ID is not None
torch_dtype = torch.bfloat16
dart = AutoModelForCausalLM.from_pretrained(
DART_V3_REPO_ID,
torch_dtype=torch_dtype,
token=HF_TOKEN,
use_cache=True,
)
dart = dart.eval()
dart = dart.requires_grad_(False)
dart = torch.compile(dart)
tokenizer = AutoTokenizer.from_pretrained(DART_V3_REPO_ID)
pipe = StableDiffusionXLPipeline.from_pretrained(
IMAGE_MODEL_REPO_ID,
torch_dtype=torch_dtype,
add_watermarker=False,
custom_pipeline="lpw_stable_diffusion_xl"
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.unet.set_attn_processor(AttnProcessor2_0())
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
TEMPLATE = (
"<|bos|>"
#
"<|rating:general|>"
"{aspect_ratio}"
"<|length:medium|>"
#
"<copyright>original</copyright>"
#
"<character></character>"
#
"<general>"
)
def get_aspect_ratio(width: int, height: int) -> str:
ar = width / height
if ar <= 1 / math.sqrt(3):
return "<|aspect_ratio:ultra_wide|>"
elif ar <= 8 / 9: #
return "<|aspect_ratio:wide|>"
elif ar < 9 / 8:
return "<|aspect_ratio:square|>"
elif ar < math.sqrt(3):
return "<|aspect_ratio:tall|>"
else:
return "<|aspect_ratio:ultra_tall|>"
@torch.inference_mode
def generate_prompt(aspect_ratio: str):
input_ids = tokenizer.encode_plus(
TEMPLATE.format(aspect_ratio=aspect_ratio),
return_tensors="pt",
).input_ids
print("input_ids:", input_ids)
output_ids = dart.generate(
input_ids,
max_new_tokens=256,
do_sample=True,
temperature=1.0,
top_p=1.0,
top_k=100,
num_beams=1,
)[0]
generated = output_ids[len(input_ids) :]
decoded = ", ".join([token for token in tokenizer.batch_decode(generated, skip_special_tokens=True) if token.strip() != ""])
print("decoded:", decoded)
return decoded
def format_prompt(prompt: str, prompt_suffix: str):
return f"{prompt}, {prompt_suffix}"
@spaces.GPU
def generate_image(
prompt: str,
negative_prompt: str,
generator,
width: int,
height: int,
guidance_scale: float,
num_inference_steps: int,
):
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image
def on_generate(
suffix: str,
negative_prompt: str,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
ar = get_aspect_ratio(width, height)
prompt = generate_prompt(ar)
prompt = format_prompt(prompt, suffix)
print(prompt)
image = generate_image(
prompt,
negative_prompt,
generator,
width,
height,
guidance_scale,
num_inference_steps,
)
return image, prompt, seed
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Random IllustriousXL
""")
with gr.Row():
run_button = gr.Button("Generate random", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Generation details", open=False):
prompt_txt = gr.Textbox(label="Generated prompt", interactive=False)
with gr.Accordion("Advanced Settings", open=False):
prompt_suffix = gr.Text(
label="Prompt suffix",
visible=True,
value="masterpiece, best quality, very aesthetic",
)
negative_prompt = gr.Text(
label="Negative prompt",
placeholder="Enter a negative prompt",
visible=True,
value="(worst quality, bad quality, low quality:1.2), lowres, displeasing, very displeasing, bad anatomy, bad hands, extra digits, fewer digits, scan artifacts, signature, username, jpeg artifacts, retro, 2010s",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=64,
value=832, # Replace with defaults that work for your model
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=64,
value=1152, # Replace with defaults that work for your model
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=1.0,
maximum=10.0,
step=0.5,
value=7,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=20,
maximum=50,
step=1,
value=25,
)
gr.on(
triggers=[run_button.click],
fn=on_generate,
inputs=[
prompt_suffix,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, prompt_txt, seed],
)
demo.queue().launch()
|