Spaces:
Running
Running
# Data Organization | |
We recommend follow [THuman4.0](https://github.com/ZhengZerong/THUman4.0-Dataset) dataset to organize your own data as shown below: | |
``` | |
data_dir | |
├── images | |
| └── cam00 | |
│ └── cam01 | |
├── masks | |
│ └── cam00 | |
│ └── cam01 | |
├── calibration.json | |
├── smpl_params.npz | |
``` | |
# Preprocessing | |
1. (Optional) Reconstruct a template if the character is wearing loose clothes. | |
* Install additional libs. | |
``` | |
cd ./utils/posevocab_custom_ops | |
python setup.py install | |
cd ../.. | |
cd ./utils/root_finding | |
python setup.py install | |
cd ../.. | |
``` | |
* Generate a canonical LBS weight volume. | |
* **For Windows**: Download [AdaptiveSolvers.x64.zip](https://www.cs.jhu.edu/~misha/Code/PoissonRecon/Version16.01/AdaptiveSolvers.x64.zip) and extract ```PointInterpolant.exe``` to ```./bins``` | |
* **For Linux**: | |
* Clone [Adaptive Multigrid Solvers (Version 16.04)](https://github.com/mkazhdan/PoissonRecon.git) to directory of your choice | |
* ```cd path/to/cloned/repo``` | |
* ```make pointinterpolant``` | |
* The resulting executable file is at ```path/to/cloned/repo/Bin/Linux/PointInterpolant```. Copy it to ```./bins``` (you may need to do ```mkdir ./bins``` beforehand) | |
* Go to ```./gen_data/gen_weight_volume.py line 115```, change ```solve(smpl_model.lbs_weights.shape[-1], ".\\bins\\PointInterpolant.exe")``` to ```solve(smpl_model.lbs_weights.shape[-1], "./bins/PointInterpolant")```. (This is the resulting executable file we previously made.) | |
``` | |
python -m gen_data.gen_weight_volume -c configs/***/template.yaml | |
``` | |
* Run the following script to reconstruct a template. | |
``` | |
python main_template.py -c configs/***/template.yaml | |
``` | |
2. Generate position maps. | |
``` | |
python -m gen_data.gen_pos_maps -c configs/***/avatar.yaml | |
``` | |