Spaces:
Running
Running
import math | |
import random | |
import numpy as np | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from .fused_act import FusedLeakyReLU, fused_leaky_relu | |
from .upfirdn2d import upfirdn2d | |
from . import conv2d_gradfix | |
class PixelNorm(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def forward(self, input): | |
return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8) | |
def make_kernel(k): | |
k = torch.tensor(k, dtype=torch.float32) | |
if k.ndim == 1: | |
k = k[None, :] * k[:, None] | |
k /= k.sum() | |
return k | |
class Upsample(nn.Module): | |
def __init__(self, kernel, factor=2): | |
super().__init__() | |
self.factor = factor | |
kernel = make_kernel(kernel) * (factor ** 2) | |
self.register_buffer("kernel", kernel) | |
p = kernel.shape[0] - factor | |
pad0 = (p + 1) // 2 + factor - 1 | |
pad1 = p // 2 | |
self.pad = (pad0, pad1) | |
def forward(self, input): | |
out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=self.pad) | |
return out | |
class Downsample(nn.Module): | |
def __init__(self, kernel, factor=2): | |
super().__init__() | |
self.factor = factor | |
kernel = make_kernel(kernel) | |
self.register_buffer("kernel", kernel) | |
p = kernel.shape[0] - factor | |
pad0 = (p + 1) // 2 | |
pad1 = p // 2 | |
self.pad = (pad0, pad1) | |
def forward(self, input): | |
out = upfirdn2d(input, self.kernel, up=1, down=self.factor, pad=self.pad) | |
return out | |
class Blur(nn.Module): | |
def __init__(self, kernel, pad, upsample_factor=1): | |
super().__init__() | |
kernel = make_kernel(kernel) | |
if upsample_factor > 1: | |
kernel = kernel * (upsample_factor ** 2) | |
self.register_buffer("kernel", kernel) | |
self.pad = pad | |
def forward(self, input): | |
out = upfirdn2d(input, self.kernel, pad=self.pad) | |
return out | |
class EqualConv2d(nn.Module): | |
def __init__( | |
self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True | |
): | |
super().__init__() | |
self.weight = nn.Parameter( | |
torch.randn(out_channel, in_channel, kernel_size, kernel_size) | |
) | |
self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2) | |
self.stride = stride | |
self.padding = padding | |
if bias: | |
self.bias = nn.Parameter(torch.zeros(out_channel)) | |
else: | |
self.bias = None | |
def forward(self, input): | |
out = conv2d_gradfix.conv2d( | |
input, | |
self.weight * self.scale, | |
bias=self.bias, | |
stride=self.stride, | |
padding=self.padding, | |
) | |
return out | |
def __repr__(self): | |
return ( | |
f"{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]}," | |
f" {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})" | |
) | |
class EqualLinear(nn.Module): | |
def __init__( | |
self, in_dim, out_dim, bias=True, bias_init=0.0, lr_mul=1.0, activation=None | |
): | |
super().__init__() | |
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul)) | |
if bias: | |
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init)) | |
else: | |
self.bias = None | |
self.activation = activation | |
self.scale = (1 / math.sqrt(in_dim)) * lr_mul | |
self.lr_mul = lr_mul | |
def forward(self, input): | |
if self.activation: | |
out = F.linear(input, self.weight * self.scale) | |
out = fused_leaky_relu(out, self.bias * self.lr_mul) | |
else: | |
out = F.linear( | |
input, self.weight * self.scale, bias=self.bias * self.lr_mul | |
) | |
return out | |
def __repr__(self): | |
return ( | |
f"{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})" | |
) | |
class ModulatedConv2d(nn.Module): | |
def __init__( | |
self, | |
in_channel, | |
out_channel, | |
kernel_size, | |
style_dim, | |
demodulate=True, | |
upsample=False, | |
downsample=False, | |
blur_kernel=[1, 3, 3, 1], | |
fused=True, | |
): | |
super().__init__() | |
self.eps = 1e-8 | |
self.kernel_size = kernel_size | |
self.in_channel = in_channel | |
self.out_channel = out_channel | |
self.upsample = upsample | |
self.downsample = downsample | |
if upsample: | |
factor = 2 | |
p = (len(blur_kernel) - factor) - (kernel_size - 1) | |
pad0 = (p + 1) // 2 + factor - 1 | |
pad1 = p // 2 + 1 | |
self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor) | |
if downsample: | |
factor = 2 | |
p = (len(blur_kernel) - factor) + (kernel_size - 1) | |
pad0 = (p + 1) // 2 | |
pad1 = p // 2 | |
self.blur = Blur(blur_kernel, pad=(pad0, pad1)) | |
fan_in = in_channel * kernel_size ** 2 | |
self.scale = 1 / math.sqrt(fan_in) | |
self.padding = kernel_size // 2 | |
self.weight = nn.Parameter( | |
torch.randn(1, out_channel, in_channel, kernel_size, kernel_size) | |
) | |
self.modulation = EqualLinear(style_dim, in_channel, bias_init=1) | |
self.demodulate = demodulate | |
self.fused = fused | |
def __repr__(self): | |
return ( | |
f"{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, " | |
f"upsample={self.upsample}, downsample={self.downsample})" | |
) | |
def forward(self, input, style): | |
batch, in_channel, height, width = input.shape | |
if not self.fused: | |
weight = self.scale * self.weight.squeeze(0) | |
style = self.modulation(style) | |
if self.demodulate: | |
w = weight.unsqueeze(0) * style.view(batch, 1, in_channel, 1, 1) | |
dcoefs = (w.square().sum((2, 3, 4)) + 1e-8).rsqrt() | |
input = input * style.reshape(batch, in_channel, 1, 1) | |
if self.upsample: | |
weight = weight.transpose(0, 1) | |
out = conv2d_gradfix.conv_transpose2d( | |
input, weight, padding=0, stride=2 | |
) | |
out = self.blur(out) | |
elif self.downsample: | |
input = self.blur(input) | |
out = conv2d_gradfix.conv2d(input, weight, padding=0, stride=2) | |
else: | |
out = conv2d_gradfix.conv2d(input, weight, padding=self.padding) | |
if self.demodulate: | |
out = out * dcoefs.view(batch, -1, 1, 1) | |
return out | |
style = self.modulation(style).view(batch, 1, in_channel, 1, 1) | |
weight = self.scale * self.weight * style | |
if self.demodulate: | |
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8) | |
weight = weight * demod.view(batch, self.out_channel, 1, 1, 1) | |
weight = weight.view( | |
batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size | |
) | |
if self.upsample: | |
input = input.view(1, batch * in_channel, height, width) | |
weight = weight.view( | |
batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size | |
) | |
weight = weight.transpose(1, 2).reshape( | |
batch * in_channel, self.out_channel, self.kernel_size, self.kernel_size | |
) | |
out = conv2d_gradfix.conv_transpose2d( | |
input, weight, padding=0, stride=2, groups=batch | |
) | |
_, _, height, width = out.shape | |
out = out.view(batch, self.out_channel, height, width) | |
out = self.blur(out) | |
elif self.downsample: | |
input = self.blur(input) | |
_, _, height, width = input.shape | |
input = input.view(1, batch * in_channel, height, width) | |
out = conv2d_gradfix.conv2d( | |
input, weight, padding=0, stride=2, groups=batch | |
) | |
_, _, height, width = out.shape | |
out = out.view(batch, self.out_channel, height, width) | |
else: | |
input = input.view(1, batch * in_channel, height, width) | |
out = conv2d_gradfix.conv2d( | |
input, weight, padding=self.padding, groups=batch | |
) | |
_, _, height, width = out.shape | |
out = out.view(batch, self.out_channel, height, width) | |
return out | |
class NoiseInjection(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.weight = nn.Parameter(torch.zeros(1)) | |
def forward(self, image, noise=None): | |
if noise is None: | |
batch, _, height, width = image.shape | |
noise = image.new_empty(batch, 1, height, width).normal_() | |
return image + self.weight * noise | |
class ConstantInput(nn.Module): | |
def __init__(self, channel, size=4): | |
super().__init__() | |
self.input = nn.Parameter(torch.randn(1, channel, size, size)) | |
def forward(self, input): | |
batch = input.shape[0] | |
out = self.input.repeat(batch, 1, 1, 1) | |
return out | |
class ConvLayer(nn.Sequential): | |
def __init__( | |
self, | |
in_channel, | |
out_channel, | |
kernel_size, | |
downsample=False, | |
blur_kernel=[1, 3, 3, 1], | |
bias=True, | |
activate=True, | |
): | |
layers = [] | |
if downsample: | |
factor = 2 | |
p = (len(blur_kernel) - factor) + (kernel_size - 1) | |
pad0 = (p + 1) // 2 | |
pad1 = p // 2 | |
layers.append(Blur(blur_kernel, pad=(pad0, pad1))) | |
stride = 2 | |
self.padding = 0 | |
else: | |
stride = 1 | |
self.padding = kernel_size // 2 | |
layers.append( | |
EqualConv2d( | |
in_channel, | |
out_channel, | |
kernel_size, | |
padding=self.padding, | |
stride=stride, | |
bias=bias and not activate, | |
) | |
) | |
if activate: | |
layers.append(FusedLeakyReLU(out_channel, bias=bias)) | |
super().__init__(*layers) | |
def get_haar_wavelet(in_channels): | |
haar_wav_l = 1 / (2 ** 0.5) * torch.ones(1, 2) | |
haar_wav_h = 1 / (2 ** 0.5) * torch.ones(1, 2) | |
haar_wav_h[0, 0] = -1 * haar_wav_h[0, 0] | |
haar_wav_ll = haar_wav_l.T * haar_wav_l | |
haar_wav_lh = haar_wav_h.T * haar_wav_l | |
haar_wav_hl = haar_wav_l.T * haar_wav_h | |
haar_wav_hh = haar_wav_h.T * haar_wav_h | |
return haar_wav_ll, haar_wav_lh, haar_wav_hl, haar_wav_hh | |
class HaarTransform(nn.Module): | |
def __init__(self, in_channels): | |
super().__init__() | |
ll, lh, hl, hh = get_haar_wavelet(in_channels) | |
self.register_buffer('ll', ll) | |
self.register_buffer('lh', lh) | |
self.register_buffer('hl', hl) | |
self.register_buffer('hh', hh) | |
def forward(self, input): | |
ll = upfirdn2d(input, self.ll, down=2) | |
lh = upfirdn2d(input, self.lh, down=2) | |
hl = upfirdn2d(input, self.hl, down=2) | |
hh = upfirdn2d(input, self.hh, down=2) | |
return torch.cat((ll, lh, hl, hh), 1) | |
class InverseHaarTransform(nn.Module): | |
def __init__(self, in_channels): | |
super().__init__() | |
ll, lh, hl, hh = get_haar_wavelet(in_channels) | |
self.register_buffer('ll', ll) | |
self.register_buffer('lh', -lh) | |
self.register_buffer('hl', -hl) | |
self.register_buffer('hh', hh) | |
def forward(self, input): | |
ll, lh, hl, hh = input.chunk(4, 1) | |
ll = upfirdn2d(ll, self.ll, up=2, pad=(1, 0, 1, 0)) | |
lh = upfirdn2d(lh, self.lh, up=2, pad=(1, 0, 1, 0)) | |
hl = upfirdn2d(hl, self.hl, up=2, pad=(1, 0, 1, 0)) | |
hh = upfirdn2d(hh, self.hh, up=2, pad=(1, 0, 1, 0)) | |
return ll + lh + hl + hh | |
class ConvBlock(nn.Module): | |
def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1], downsample=True): | |
super().__init__() | |
self.conv1 = ConvLayer(in_channel, in_channel, 3) | |
self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=downsample) | |
def forward(self, input): | |
out = self.conv1(input) | |
out = self.conv2(out) | |
return out | |
class FromRGB(nn.Module): | |
def __init__(self, out_channel, in_channel, downsample=True, blur_kernel=[1, 3, 3, 1], use_wt=True): | |
super().__init__() | |
self.downsample = downsample | |
self.use_wt = use_wt | |
if downsample: | |
self.downsample = Downsample(blur_kernel) | |
if use_wt: | |
self.iwt = InverseHaarTransform(in_channel) | |
self.dwt = HaarTransform(in_channel) | |
self.in_channel = in_channel * 4 if self.use_wt else in_channel | |
self.conv = ConvLayer(self.in_channel, out_channel, 1) | |
def forward(self, input, skip=None): | |
if self.downsample: | |
if self.use_wt: | |
input = self.iwt(input) # [1024, 3] | |
input = self.downsample(input) # [512, 3] | |
input = self.dwt(input) # [256, 12] | |
else: | |
input = self.downsample(input) # [512, 3] | |
out = self.conv(input) # [256, out_channel] | |
if skip is not None: | |
out = out + skip | |
return input, out | |
class Discriminator(nn.Module): | |
def __init__(self, size, img_channel=6, channel_multiplier=2, blur_kernel=[1, 3, 3, 1], c_dim=0): | |
super().__init__() | |
channels = { | |
4: 512, | |
8: 512, | |
16: 512, | |
32: 512, | |
64: 256 * channel_multiplier, | |
128: 128 * channel_multiplier, | |
256: 64 * channel_multiplier, | |
512: 32 * channel_multiplier, | |
1024: 16 * channel_multiplier, | |
2048: 16 * channel_multiplier, | |
4096: 16 * channel_multiplier | |
} | |
self.dwt = HaarTransform(img_channel) | |
self.from_rgbs = nn.ModuleList() | |
self.convs = nn.ModuleList() | |
log_size = int(math.log(size, 2)) - 1 | |
in_channel = channels[size] | |
for i in range(log_size, 2, -1): | |
out_channel = channels[2 ** (i - 1)] | |
self.from_rgbs.append(FromRGB(in_channel, img_channel, downsample=i != log_size)) | |
self.convs.append(ConvBlock(in_channel, out_channel, blur_kernel)) | |
in_channel = out_channel | |
self.from_rgbs.append(FromRGB(channels[4], img_channel)) | |
self.stddev_group = 4 | |
self.stddev_feat = 1 | |
self.final_conv = ConvLayer(in_channel + 1, channels[4], 3) | |
self.final_linear = nn.Sequential( | |
EqualLinear(channels[4] * 4 * 4, channels[4], activation="fused_lrelu"), | |
EqualLinear(channels[4], 1), | |
) | |
self.c_dim = c_dim | |
if c_dim > 0: | |
style_dim = 64 | |
lr_mlp = 0.01 | |
layers = [] | |
layers.append( | |
EqualLinear( | |
c_dim, style_dim, lr_mul=lr_mlp, activation="fused_lrelu" | |
) | |
) | |
for i in range(3): | |
layers.append( | |
EqualLinear( | |
style_dim, style_dim, lr_mul=lr_mlp, activation="fused_lrelu" | |
) | |
) | |
self.mapping = nn.Sequential(*layers) | |
def forward(self, input, flat_pose=None): | |
input = self.dwt(input) | |
out = None | |
for from_rgb, conv in zip(self.from_rgbs, self.convs): | |
input, out = from_rgb(input, out) | |
out = conv(out) | |
_, out = self.from_rgbs[-1](input, out) | |
batch, channel, height, width = out.shape | |
group = min(batch, self.stddev_group) | |
stddev = out.view(group, -1, self.stddev_feat, channel // self.stddev_feat, height, width) | |
stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8) | |
stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2) | |
stddev = stddev.repeat(group, 1, height, width) | |
out = torch.cat([out, stddev], 1) | |
out = self.final_conv(out) | |
out = out.view(batch, -1) | |
out = self.final_linear(out) | |
if self.c_dim > 0: | |
pose_embed = self.mapping(flat_pose) | |
pose_embed = self.normalize_2nd_moment(pose_embed) | |
out = (out * pose_embed).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.c_dim)) | |
return out | |
def normalize_2nd_moment(self, x, dim=1, eps=1e-8): | |
return x * (x.square().mean(dim=dim, keepdim=True) + eps).rsqrt() | |
class StyledConv(nn.Module): | |
def __init__( | |
self, | |
in_channel, | |
out_channel, | |
kernel_size, | |
style_dim, | |
upsample=False, | |
blur_kernel=[1, 3, 3, 1], | |
demodulate=True, | |
): | |
super().__init__() | |
self.conv = ModulatedConv2d( | |
in_channel, | |
out_channel, | |
kernel_size, | |
style_dim, | |
upsample=upsample, | |
blur_kernel=blur_kernel, | |
demodulate=demodulate, | |
) | |
self.noise = NoiseInjection() | |
# self.bias = nn.Parameter(torch.zeros(1, out_channel, 1, 1)) | |
# self.activate = ScaledLeakyReLU(0.2) | |
self.activate = FusedLeakyReLU(out_channel) | |
def forward(self, input, style, noise=None): | |
out = self.conv(input, style) | |
out = self.noise(out, noise=noise) | |
# out = out + self.bias | |
out = self.activate(out) | |
return out | |
class ToRGB(nn.Module): | |
def __init__(self, in_channel, style_dim, out_channel=12, upsample=True, blur_kernel=[1, 3, 3, 1], use_wt=True): | |
super().__init__() | |
self.use_wt = use_wt | |
if upsample: | |
self.upsample = Upsample(blur_kernel) | |
if use_wt: | |
self.iwt = InverseHaarTransform(3) | |
self.dwt = HaarTransform(3) | |
self.out_channel = out_channel if self.use_wt else out_channel // 4 | |
self.conv = ModulatedConv2d(in_channel, self.out_channel, 1, style_dim, demodulate=False) | |
self.bias = nn.Parameter(torch.zeros(1, self.out_channel, 1, 1)) | |
def forward(self, input, style, skip=None): | |
out = self.conv(input, style) | |
out = out + self.bias | |
if skip is not None: | |
if self.use_wt: | |
skip = self.iwt(skip) | |
skip = self.upsample(skip) | |
skip = self.dwt(skip) | |
else: | |
skip = self.upsample(skip) | |
out = out + skip | |
return out | |
class DualStyleUNet(nn.Module): | |
def __init__(self, inp_size, inp_ch, out_ch, out_size, style_dim, n_mlp, middle_size=8, c_dim=0, | |
channel_multiplier=2, blur_kernel=[1, 3, 3, 1], lr_mlp=0.01): | |
super().__init__() | |
self.inp_size = inp_size | |
self.style_dim = style_dim | |
self.middle_log_size = int(math.log(middle_size, 2)) | |
layers = [PixelNorm()] | |
if c_dim == 0: | |
layers.append(EqualLinear( | |
style_dim, style_dim, lr_mul=lr_mlp, activation="fused_lrelu" | |
)) | |
else: | |
layers.append(EqualLinear( | |
style_dim + c_dim, style_dim, lr_mul=lr_mlp, activation="fused_lrelu" | |
)) | |
for i in range(n_mlp-1): | |
layers.append( | |
EqualLinear( | |
style_dim, style_dim, lr_mul=lr_mlp, activation="fused_lrelu" | |
) | |
) | |
self.style = nn.Sequential(*layers) # mapping network | |
self.channels = { | |
4: 512, | |
8: 512, | |
16: 512, | |
32: 512, | |
64: 256 * channel_multiplier, | |
128: 128 * channel_multiplier, | |
256: 64 * channel_multiplier, | |
512: 32 * channel_multiplier, | |
1024: 16 * channel_multiplier, | |
2048: 16 * channel_multiplier, | |
4096: 16 * channel_multiplier | |
} | |
self.log_size = int(math.log(out_size, 2)) - 1 | |
# add new layer here | |
# self.dwt = HaarTransform(3) | |
# self.from_rgbs = nn.ModuleList() | |
# self.cond_convs = nn.ModuleList() | |
self.comb_convs = nn.ModuleList() | |
in_channel = self.channels[inp_size // 2] # 64 | |
self.from_rgbs = nn.ModuleList() | |
self.cond_convs = nn.ModuleList() | |
self.comb_convs = nn.ModuleList() # 64, 32, 16 | |
self.comb_convs.append(ConvLayer(in_channel * 2, in_channel, 3)) | |
self.conv_in = ConvLayer(inp_ch, in_channel, 3, downsample=True) | |
for i in range(int(math.log(inp_size, 2)) - 2, self.middle_log_size - 1, -1): # 32, 16, 8 | |
out_channel = self.channels[2 ** i] # (inp_size/2)->->(8*512) | |
self.from_rgbs.append(FromRGB(in_channel, inp_ch, downsample=True, use_wt=False)) # //2 | |
# self.from_rgbs.append(FromRGB(in_channel, inp_ch, downsample=(i + 1)!=int(math.log(inp_size, 2)), use_wt=False)) | |
self.cond_convs.append(ConvBlock(in_channel, out_channel, blur_kernel)) # //2 | |
if i > self.middle_log_size: | |
self.comb_convs.append(ConvLayer(out_channel * 2, out_channel, 3)) | |
else: | |
self.comb_convs.append(ConvLayer(out_channel, out_channel, 3)) # 最后一层 (8*512) | |
in_channel = out_channel | |
# self.input = ConstantInput(self.channels[middle_size], size=middle_size) | |
# self.conv1 = StyledConv( | |
# self.channels[middle_size], self.channels[middle_size], 3, style_dim, blur_kernel=blur_kernel | |
# ) | |
# self.to_rgb1 = ToRGB(self.channels[middle_size], style_dim, upsample=False) | |
self.convs1 = nn.ModuleList() | |
self.convs2 = nn.ModuleList() | |
self.to_rgbs1 = nn.ModuleList() | |
self.to_rgbs2 = nn.ModuleList() | |
self.noises = nn.Module() | |
in_channel = self.channels[middle_size] | |
self.num_layers = (self.log_size - self.middle_log_size) * 2 | |
for layer_idx in range(self.num_layers): | |
res = (layer_idx + 8) // 2 | |
shape = [1, 1, 2 ** res, 2 ** res] | |
self.noises.register_buffer(f"noise_{layer_idx}", torch.randn(*shape)) | |
for i in range(self.middle_log_size + 1, self.log_size + 1): # 4, 5, 6, 7, 8, 9 | |
out_channel = self.channels[2 ** i] # (16*512)->(32*512)->(64*512)->(128*256)->(256*128)->(512*64) | |
self.convs1.append( | |
StyledConv( | |
in_channel, | |
out_channel, | |
3, | |
style_dim, | |
upsample=True, | |
blur_kernel=blur_kernel, | |
) | |
) | |
self.convs1.append( | |
StyledConv( | |
out_channel, out_channel, 3, style_dim, blur_kernel=blur_kernel | |
) | |
) | |
self.to_rgbs1.append(ToRGB(in_channel=out_channel, style_dim=style_dim, out_channel=out_ch * 4)) | |
self.convs2.append( | |
StyledConv( | |
in_channel, | |
out_channel, | |
3, | |
style_dim, | |
upsample = True, | |
blur_kernel = blur_kernel, | |
) | |
) | |
self.convs2.append( | |
StyledConv( | |
out_channel, out_channel, 3, style_dim, blur_kernel = blur_kernel | |
) | |
) | |
self.to_rgbs2.append(ToRGB(in_channel = out_channel, style_dim = style_dim, out_channel = out_ch * 4)) | |
in_channel = out_channel | |
self.iwt = InverseHaarTransform(out_ch) | |
self.n_latent = self.log_size * 2 - (self.middle_log_size * 2 - 1) + 1 | |
def make_noise(self, device, zero_noise=False): | |
noises = [] | |
func = torch.zeros if zero_noise else torch.randn | |
for i in range(self.middle_log_size + 1, self.log_size + 1): | |
for _ in range(2): | |
noises.append(func(1, 1, 2 ** i, 2 ** i, device=device)) | |
# if zero_noise: | |
# for i in range(len(noises)): | |
# if i < len(noises) - 2: | |
# noises[i] = None | |
return noises | |
def mean_latent(self, n_latent): | |
latent_in = torch.randn( | |
n_latent, self.style_dim, device=self.input.input.device | |
) | |
latent = self.style(latent_in).mean(0, keepdim=True) | |
return latent | |
def get_latent(self, input): | |
return self.style(input) | |
def forward( | |
self, | |
styles, | |
condition_img, | |
cond=None, | |
return_latents=False, | |
inject_index=None, | |
truncation=1, | |
truncation_latent=None, | |
input_is_latent=False, | |
noise=None, | |
randomize_noise=True, | |
view_feature1 = None, | |
view_feature2 = None | |
): | |
""" | |
:param randomize_noise: False, use fixed noise | |
""" | |
if not input_is_latent: | |
if cond is None: | |
styles = [self.style(s) for s in styles] | |
else: | |
styles = [self.style(torch.cat([s, cond], dim=-1)) for s in styles] | |
if noise is None: | |
if randomize_noise: | |
noise = [None] * self.num_layers | |
else: | |
noise = [ | |
getattr(self.noises, f"noise_{i}") for i in range(self.num_layers) | |
] | |
if truncation < 1: | |
style_t = [] | |
for style in styles: | |
style_t.append( | |
truncation_latent + truncation * (style - truncation_latent) | |
) | |
styles = style_t | |
if len(styles) < 2: | |
inject_index = self.n_latent | |
if styles[0].ndim < 3: | |
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) | |
else: | |
latent = styles[0] | |
else: | |
if inject_index is None: | |
inject_index = random.randint(1, self.n_latent - 1) | |
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) | |
latent2 = styles[1].unsqueeze(1).repeat(1, self.n_latent - inject_index, 1) | |
latent = torch.cat([latent, latent2], 1) | |
# cond_list = self.img_unet(condition_img) | |
cond_img = condition_img | |
cond_out = self.conv_in(cond_img) ### None | |
cond_list = [cond_out] ### [] | |
cond_num = 0 | |
for from_rgb, cond_conv in zip(self.from_rgbs, self.cond_convs): | |
cond_img, cond_out = from_rgb(cond_img, cond_out) | |
cond_out = cond_conv(cond_out) | |
# print('Down', cond_img.shape, cond_out.shape) | |
cond_list.append(cond_out) | |
cond_num += 1 | |
# out = self.input(latent) | |
# out = self.conv1(out, latent[:, 0], noise=noise[0]) | |
# skip = self.to_rgb1(out, latent[:, 1]) | |
i = 0 | |
skip = None | |
for conv1, conv2, noise1, noise2, to_rgb in zip( | |
self.convs1[::2], self.convs1[1::2], noise[::2], noise[1::2], self.to_rgbs1 | |
): | |
if i == 0: | |
out = self.comb_convs[-1](cond_list[-1]) | |
elif i < 2 * len(self.comb_convs): | |
out = torch.cat([out, cond_list[-1 - (i // 2)]], dim=1) | |
out = self.comb_convs[-1 - (i // 2)](out) | |
out = conv1(out, latent[:, i], noise=noise1) | |
out = conv2(out, latent[:, i + 1], noise=noise2) | |
skip = to_rgb(out, latent[:, i + 2], skip) | |
# print(i, out.shape, skip.shape) | |
if view_feature1 is not None and i == 8: | |
view_feature1 = F.interpolate(view_feature1, out.shape[-2:], mode = 'bilinear') # (B, 128, 256. 256) | |
out = out + view_feature1 | |
i += 2 | |
image1 = self.iwt(skip) | |
i = 0 | |
skip = None | |
for conv1, conv2, noise1, noise2, to_rgb in zip( | |
self.convs2[::2], self.convs2[1::2], noise[::2], noise[1::2], self.to_rgbs2 | |
): | |
if i == 0: | |
out = self.comb_convs[-1](cond_list[-1]) | |
elif i < 2 * len(self.comb_convs): | |
out = torch.cat([out, cond_list[-1 - (i // 2)]], dim=1) | |
out = self.comb_convs[-1 - (i // 2)](out) | |
out = conv1(out, latent[:, i], noise=noise1) | |
out = conv2(out, latent[:, i + 1], noise=noise2) | |
skip = to_rgb(out, latent[:, i + 2], skip) | |
if view_feature2 is not None and i == 8: | |
view_feature2 = F.interpolate(view_feature2, out.shape[-2:], mode = 'bilinear') # (B, 128, 256. 256) | |
out = out + view_feature2 | |
i += 2 | |
image2 = self.iwt(skip) | |
images = torch.cat([image1, image2], 1) | |
if return_latents: | |
return images, latent | |
else: | |
return images, None |