pengc02's picture
all
ec9a6bc
raw
history blame
29.9 kB
import math
import random
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from .fused_act import FusedLeakyReLU, fused_leaky_relu
from .upfirdn2d import upfirdn2d
from . import conv2d_gradfix
class PixelNorm(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input):
return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8)
def make_kernel(k):
k = torch.tensor(k, dtype=torch.float32)
if k.ndim == 1:
k = k[None, :] * k[:, None]
k /= k.sum()
return k
class Upsample(nn.Module):
def __init__(self, kernel, factor=2):
super().__init__()
self.factor = factor
kernel = make_kernel(kernel) * (factor ** 2)
self.register_buffer("kernel", kernel)
p = kernel.shape[0] - factor
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2
self.pad = (pad0, pad1)
def forward(self, input):
out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=self.pad)
return out
class Downsample(nn.Module):
def __init__(self, kernel, factor=2):
super().__init__()
self.factor = factor
kernel = make_kernel(kernel)
self.register_buffer("kernel", kernel)
p = kernel.shape[0] - factor
pad0 = (p + 1) // 2
pad1 = p // 2
self.pad = (pad0, pad1)
def forward(self, input):
out = upfirdn2d(input, self.kernel, up=1, down=self.factor, pad=self.pad)
return out
class Blur(nn.Module):
def __init__(self, kernel, pad, upsample_factor=1):
super().__init__()
kernel = make_kernel(kernel)
if upsample_factor > 1:
kernel = kernel * (upsample_factor ** 2)
self.register_buffer("kernel", kernel)
self.pad = pad
def forward(self, input):
out = upfirdn2d(input, self.kernel, pad=self.pad)
return out
class EqualConv2d(nn.Module):
def __init__(
self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True
):
super().__init__()
self.weight = nn.Parameter(
torch.randn(out_channel, in_channel, kernel_size, kernel_size)
)
self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)
self.stride = stride
self.padding = padding
if bias:
self.bias = nn.Parameter(torch.zeros(out_channel))
else:
self.bias = None
def forward(self, input):
out = conv2d_gradfix.conv2d(
input,
self.weight * self.scale,
bias=self.bias,
stride=self.stride,
padding=self.padding,
)
return out
def __repr__(self):
return (
f"{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},"
f" {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})"
)
class EqualLinear(nn.Module):
def __init__(
self, in_dim, out_dim, bias=True, bias_init=0.0, lr_mul=1.0, activation=None
):
super().__init__()
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
if bias:
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
else:
self.bias = None
self.activation = activation
self.scale = (1 / math.sqrt(in_dim)) * lr_mul
self.lr_mul = lr_mul
def forward(self, input):
if self.activation:
out = F.linear(input, self.weight * self.scale)
out = fused_leaky_relu(out, self.bias * self.lr_mul)
else:
out = F.linear(
input, self.weight * self.scale, bias=self.bias * self.lr_mul
)
return out
def __repr__(self):
return (
f"{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})"
)
class ModulatedConv2d(nn.Module):
def __init__(
self,
in_channel,
out_channel,
kernel_size,
style_dim,
demodulate=True,
upsample=False,
downsample=False,
blur_kernel=[1, 3, 3, 1],
fused=True,
):
super().__init__()
self.eps = 1e-8
self.kernel_size = kernel_size
self.in_channel = in_channel
self.out_channel = out_channel
self.upsample = upsample
self.downsample = downsample
if upsample:
factor = 2
p = (len(blur_kernel) - factor) - (kernel_size - 1)
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2 + 1
self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor)
if downsample:
factor = 2
p = (len(blur_kernel) - factor) + (kernel_size - 1)
pad0 = (p + 1) // 2
pad1 = p // 2
self.blur = Blur(blur_kernel, pad=(pad0, pad1))
fan_in = in_channel * kernel_size ** 2
self.scale = 1 / math.sqrt(fan_in)
self.padding = kernel_size // 2
self.weight = nn.Parameter(
torch.randn(1, out_channel, in_channel, kernel_size, kernel_size)
)
self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
self.demodulate = demodulate
self.fused = fused
def __repr__(self):
return (
f"{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, "
f"upsample={self.upsample}, downsample={self.downsample})"
)
def forward(self, input, style):
batch, in_channel, height, width = input.shape
if not self.fused:
weight = self.scale * self.weight.squeeze(0)
style = self.modulation(style)
if self.demodulate:
w = weight.unsqueeze(0) * style.view(batch, 1, in_channel, 1, 1)
dcoefs = (w.square().sum((2, 3, 4)) + 1e-8).rsqrt()
input = input * style.reshape(batch, in_channel, 1, 1)
if self.upsample:
weight = weight.transpose(0, 1)
out = conv2d_gradfix.conv_transpose2d(
input, weight, padding=0, stride=2
)
out = self.blur(out)
elif self.downsample:
input = self.blur(input)
out = conv2d_gradfix.conv2d(input, weight, padding=0, stride=2)
else:
out = conv2d_gradfix.conv2d(input, weight, padding=self.padding)
if self.demodulate:
out = out * dcoefs.view(batch, -1, 1, 1)
return out
style = self.modulation(style).view(batch, 1, in_channel, 1, 1)
weight = self.scale * self.weight * style
if self.demodulate:
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8)
weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)
weight = weight.view(
batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size
)
if self.upsample:
input = input.view(1, batch * in_channel, height, width)
weight = weight.view(
batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size
)
weight = weight.transpose(1, 2).reshape(
batch * in_channel, self.out_channel, self.kernel_size, self.kernel_size
)
out = conv2d_gradfix.conv_transpose2d(
input, weight, padding=0, stride=2, groups=batch
)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
out = self.blur(out)
elif self.downsample:
input = self.blur(input)
_, _, height, width = input.shape
input = input.view(1, batch * in_channel, height, width)
out = conv2d_gradfix.conv2d(
input, weight, padding=0, stride=2, groups=batch
)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
else:
input = input.view(1, batch * in_channel, height, width)
out = conv2d_gradfix.conv2d(
input, weight, padding=self.padding, groups=batch
)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
return out
class NoiseInjection(nn.Module):
def __init__(self):
super().__init__()
self.weight = nn.Parameter(torch.zeros(1))
def forward(self, image, noise=None):
if noise is None:
batch, _, height, width = image.shape
noise = image.new_empty(batch, 1, height, width).normal_()
return image + self.weight * noise
class ConstantInput(nn.Module):
def __init__(self, channel, size=4):
super().__init__()
self.input = nn.Parameter(torch.randn(1, channel, size, size))
def forward(self, input):
batch = input.shape[0]
out = self.input.repeat(batch, 1, 1, 1)
return out
class ConvLayer(nn.Sequential):
def __init__(
self,
in_channel,
out_channel,
kernel_size,
downsample=False,
blur_kernel=[1, 3, 3, 1],
bias=True,
activate=True,
):
layers = []
if downsample:
factor = 2
p = (len(blur_kernel) - factor) + (kernel_size - 1)
pad0 = (p + 1) // 2
pad1 = p // 2
layers.append(Blur(blur_kernel, pad=(pad0, pad1)))
stride = 2
self.padding = 0
else:
stride = 1
self.padding = kernel_size // 2
layers.append(
EqualConv2d(
in_channel,
out_channel,
kernel_size,
padding=self.padding,
stride=stride,
bias=bias and not activate,
)
)
if activate:
layers.append(FusedLeakyReLU(out_channel, bias=bias))
super().__init__(*layers)
def get_haar_wavelet(in_channels):
haar_wav_l = 1 / (2 ** 0.5) * torch.ones(1, 2)
haar_wav_h = 1 / (2 ** 0.5) * torch.ones(1, 2)
haar_wav_h[0, 0] = -1 * haar_wav_h[0, 0]
haar_wav_ll = haar_wav_l.T * haar_wav_l
haar_wav_lh = haar_wav_h.T * haar_wav_l
haar_wav_hl = haar_wav_l.T * haar_wav_h
haar_wav_hh = haar_wav_h.T * haar_wav_h
return haar_wav_ll, haar_wav_lh, haar_wav_hl, haar_wav_hh
class HaarTransform(nn.Module):
def __init__(self, in_channels):
super().__init__()
ll, lh, hl, hh = get_haar_wavelet(in_channels)
self.register_buffer('ll', ll)
self.register_buffer('lh', lh)
self.register_buffer('hl', hl)
self.register_buffer('hh', hh)
def forward(self, input):
ll = upfirdn2d(input, self.ll, down=2)
lh = upfirdn2d(input, self.lh, down=2)
hl = upfirdn2d(input, self.hl, down=2)
hh = upfirdn2d(input, self.hh, down=2)
return torch.cat((ll, lh, hl, hh), 1)
class InverseHaarTransform(nn.Module):
def __init__(self, in_channels):
super().__init__()
ll, lh, hl, hh = get_haar_wavelet(in_channels)
self.register_buffer('ll', ll)
self.register_buffer('lh', -lh)
self.register_buffer('hl', -hl)
self.register_buffer('hh', hh)
def forward(self, input):
ll, lh, hl, hh = input.chunk(4, 1)
ll = upfirdn2d(ll, self.ll, up=2, pad=(1, 0, 1, 0))
lh = upfirdn2d(lh, self.lh, up=2, pad=(1, 0, 1, 0))
hl = upfirdn2d(hl, self.hl, up=2, pad=(1, 0, 1, 0))
hh = upfirdn2d(hh, self.hh, up=2, pad=(1, 0, 1, 0))
return ll + lh + hl + hh
class ConvBlock(nn.Module):
def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1], downsample=True):
super().__init__()
self.conv1 = ConvLayer(in_channel, in_channel, 3)
self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=downsample)
def forward(self, input):
out = self.conv1(input)
out = self.conv2(out)
return out
class FromRGB(nn.Module):
def __init__(self, out_channel, in_channel, downsample=True, blur_kernel=[1, 3, 3, 1], use_wt=True):
super().__init__()
self.downsample = downsample
self.use_wt = use_wt
if downsample:
self.downsample = Downsample(blur_kernel)
if use_wt:
self.iwt = InverseHaarTransform(in_channel)
self.dwt = HaarTransform(in_channel)
self.in_channel = in_channel * 4 if self.use_wt else in_channel
self.conv = ConvLayer(self.in_channel, out_channel, 1)
def forward(self, input, skip=None):
if self.downsample:
if self.use_wt:
input = self.iwt(input) # [1024, 3]
input = self.downsample(input) # [512, 3]
input = self.dwt(input) # [256, 12]
else:
input = self.downsample(input) # [512, 3]
out = self.conv(input) # [256, out_channel]
if skip is not None:
out = out + skip
return input, out
class Discriminator(nn.Module):
def __init__(self, size, img_channel=6, channel_multiplier=2, blur_kernel=[1, 3, 3, 1], c_dim=0):
super().__init__()
channels = {
4: 512,
8: 512,
16: 512,
32: 512,
64: 256 * channel_multiplier,
128: 128 * channel_multiplier,
256: 64 * channel_multiplier,
512: 32 * channel_multiplier,
1024: 16 * channel_multiplier,
2048: 16 * channel_multiplier,
4096: 16 * channel_multiplier
}
self.dwt = HaarTransform(img_channel)
self.from_rgbs = nn.ModuleList()
self.convs = nn.ModuleList()
log_size = int(math.log(size, 2)) - 1
in_channel = channels[size]
for i in range(log_size, 2, -1):
out_channel = channels[2 ** (i - 1)]
self.from_rgbs.append(FromRGB(in_channel, img_channel, downsample=i != log_size))
self.convs.append(ConvBlock(in_channel, out_channel, blur_kernel))
in_channel = out_channel
self.from_rgbs.append(FromRGB(channels[4], img_channel))
self.stddev_group = 4
self.stddev_feat = 1
self.final_conv = ConvLayer(in_channel + 1, channels[4], 3)
self.final_linear = nn.Sequential(
EqualLinear(channels[4] * 4 * 4, channels[4], activation="fused_lrelu"),
EqualLinear(channels[4], 1),
)
self.c_dim = c_dim
if c_dim > 0:
style_dim = 64
lr_mlp = 0.01
layers = []
layers.append(
EqualLinear(
c_dim, style_dim, lr_mul=lr_mlp, activation="fused_lrelu"
)
)
for i in range(3):
layers.append(
EqualLinear(
style_dim, style_dim, lr_mul=lr_mlp, activation="fused_lrelu"
)
)
self.mapping = nn.Sequential(*layers)
def forward(self, input, flat_pose=None):
input = self.dwt(input)
out = None
for from_rgb, conv in zip(self.from_rgbs, self.convs):
input, out = from_rgb(input, out)
out = conv(out)
_, out = self.from_rgbs[-1](input, out)
batch, channel, height, width = out.shape
group = min(batch, self.stddev_group)
stddev = out.view(group, -1, self.stddev_feat, channel // self.stddev_feat, height, width)
stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8)
stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2)
stddev = stddev.repeat(group, 1, height, width)
out = torch.cat([out, stddev], 1)
out = self.final_conv(out)
out = out.view(batch, -1)
out = self.final_linear(out)
if self.c_dim > 0:
pose_embed = self.mapping(flat_pose)
pose_embed = self.normalize_2nd_moment(pose_embed)
out = (out * pose_embed).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.c_dim))
return out
def normalize_2nd_moment(self, x, dim=1, eps=1e-8):
return x * (x.square().mean(dim=dim, keepdim=True) + eps).rsqrt()
class StyledConv(nn.Module):
def __init__(
self,
in_channel,
out_channel,
kernel_size,
style_dim,
upsample=False,
blur_kernel=[1, 3, 3, 1],
demodulate=True,
):
super().__init__()
self.conv = ModulatedConv2d(
in_channel,
out_channel,
kernel_size,
style_dim,
upsample=upsample,
blur_kernel=blur_kernel,
demodulate=demodulate,
)
self.noise = NoiseInjection()
# self.bias = nn.Parameter(torch.zeros(1, out_channel, 1, 1))
# self.activate = ScaledLeakyReLU(0.2)
self.activate = FusedLeakyReLU(out_channel)
def forward(self, input, style, noise=None):
out = self.conv(input, style)
out = self.noise(out, noise=noise)
# out = out + self.bias
out = self.activate(out)
return out
class ToRGB(nn.Module):
def __init__(self, in_channel, style_dim, out_channel=12, upsample=True, blur_kernel=[1, 3, 3, 1], use_wt=True):
super().__init__()
self.use_wt = use_wt
if upsample:
self.upsample = Upsample(blur_kernel)
if use_wt:
self.iwt = InverseHaarTransform(3)
self.dwt = HaarTransform(3)
self.out_channel = out_channel if self.use_wt else out_channel // 4
self.conv = ModulatedConv2d(in_channel, self.out_channel, 1, style_dim, demodulate=False)
self.bias = nn.Parameter(torch.zeros(1, self.out_channel, 1, 1))
def forward(self, input, style, skip=None):
out = self.conv(input, style)
out = out + self.bias
if skip is not None:
if self.use_wt:
skip = self.iwt(skip)
skip = self.upsample(skip)
skip = self.dwt(skip)
else:
skip = self.upsample(skip)
out = out + skip
return out
class DualStyleUNet(nn.Module):
def __init__(self, inp_size, inp_ch, out_ch, out_size, style_dim, n_mlp, middle_size=8, c_dim=0,
channel_multiplier=2, blur_kernel=[1, 3, 3, 1], lr_mlp=0.01):
super().__init__()
self.inp_size = inp_size
self.style_dim = style_dim
self.middle_log_size = int(math.log(middle_size, 2))
layers = [PixelNorm()]
if c_dim == 0:
layers.append(EqualLinear(
style_dim, style_dim, lr_mul=lr_mlp, activation="fused_lrelu"
))
else:
layers.append(EqualLinear(
style_dim + c_dim, style_dim, lr_mul=lr_mlp, activation="fused_lrelu"
))
for i in range(n_mlp-1):
layers.append(
EqualLinear(
style_dim, style_dim, lr_mul=lr_mlp, activation="fused_lrelu"
)
)
self.style = nn.Sequential(*layers) # mapping network
self.channels = {
4: 512,
8: 512,
16: 512,
32: 512,
64: 256 * channel_multiplier,
128: 128 * channel_multiplier,
256: 64 * channel_multiplier,
512: 32 * channel_multiplier,
1024: 16 * channel_multiplier,
2048: 16 * channel_multiplier,
4096: 16 * channel_multiplier
}
self.log_size = int(math.log(out_size, 2)) - 1
# add new layer here
# self.dwt = HaarTransform(3)
# self.from_rgbs = nn.ModuleList()
# self.cond_convs = nn.ModuleList()
self.comb_convs = nn.ModuleList()
in_channel = self.channels[inp_size // 2] # 64
self.from_rgbs = nn.ModuleList()
self.cond_convs = nn.ModuleList()
self.comb_convs = nn.ModuleList() # 64, 32, 16
self.comb_convs.append(ConvLayer(in_channel * 2, in_channel, 3))
self.conv_in = ConvLayer(inp_ch, in_channel, 3, downsample=True)
for i in range(int(math.log(inp_size, 2)) - 2, self.middle_log_size - 1, -1): # 32, 16, 8
out_channel = self.channels[2 ** i] # (inp_size/2)->->(8*512)
self.from_rgbs.append(FromRGB(in_channel, inp_ch, downsample=True, use_wt=False)) # //2
# self.from_rgbs.append(FromRGB(in_channel, inp_ch, downsample=(i + 1)!=int(math.log(inp_size, 2)), use_wt=False))
self.cond_convs.append(ConvBlock(in_channel, out_channel, blur_kernel)) # //2
if i > self.middle_log_size:
self.comb_convs.append(ConvLayer(out_channel * 2, out_channel, 3))
else:
self.comb_convs.append(ConvLayer(out_channel, out_channel, 3)) # 最后一层 (8*512)
in_channel = out_channel
# self.input = ConstantInput(self.channels[middle_size], size=middle_size)
# self.conv1 = StyledConv(
# self.channels[middle_size], self.channels[middle_size], 3, style_dim, blur_kernel=blur_kernel
# )
# self.to_rgb1 = ToRGB(self.channels[middle_size], style_dim, upsample=False)
self.convs1 = nn.ModuleList()
self.convs2 = nn.ModuleList()
self.to_rgbs1 = nn.ModuleList()
self.to_rgbs2 = nn.ModuleList()
self.noises = nn.Module()
in_channel = self.channels[middle_size]
self.num_layers = (self.log_size - self.middle_log_size) * 2
for layer_idx in range(self.num_layers):
res = (layer_idx + 8) // 2
shape = [1, 1, 2 ** res, 2 ** res]
self.noises.register_buffer(f"noise_{layer_idx}", torch.randn(*shape))
for i in range(self.middle_log_size + 1, self.log_size + 1): # 4, 5, 6, 7, 8, 9
out_channel = self.channels[2 ** i] # (16*512)->(32*512)->(64*512)->(128*256)->(256*128)->(512*64)
self.convs1.append(
StyledConv(
in_channel,
out_channel,
3,
style_dim,
upsample=True,
blur_kernel=blur_kernel,
)
)
self.convs1.append(
StyledConv(
out_channel, out_channel, 3, style_dim, blur_kernel=blur_kernel
)
)
self.to_rgbs1.append(ToRGB(in_channel=out_channel, style_dim=style_dim, out_channel=out_ch * 4))
self.convs2.append(
StyledConv(
in_channel,
out_channel,
3,
style_dim,
upsample = True,
blur_kernel = blur_kernel,
)
)
self.convs2.append(
StyledConv(
out_channel, out_channel, 3, style_dim, blur_kernel = blur_kernel
)
)
self.to_rgbs2.append(ToRGB(in_channel = out_channel, style_dim = style_dim, out_channel = out_ch * 4))
in_channel = out_channel
self.iwt = InverseHaarTransform(out_ch)
self.n_latent = self.log_size * 2 - (self.middle_log_size * 2 - 1) + 1
def make_noise(self, device, zero_noise=False):
noises = []
func = torch.zeros if zero_noise else torch.randn
for i in range(self.middle_log_size + 1, self.log_size + 1):
for _ in range(2):
noises.append(func(1, 1, 2 ** i, 2 ** i, device=device))
# if zero_noise:
# for i in range(len(noises)):
# if i < len(noises) - 2:
# noises[i] = None
return noises
def mean_latent(self, n_latent):
latent_in = torch.randn(
n_latent, self.style_dim, device=self.input.input.device
)
latent = self.style(latent_in).mean(0, keepdim=True)
return latent
def get_latent(self, input):
return self.style(input)
def forward(
self,
styles,
condition_img,
cond=None,
return_latents=False,
inject_index=None,
truncation=1,
truncation_latent=None,
input_is_latent=False,
noise=None,
randomize_noise=True,
view_feature1 = None,
view_feature2 = None
):
"""
:param randomize_noise: False, use fixed noise
"""
if not input_is_latent:
if cond is None:
styles = [self.style(s) for s in styles]
else:
styles = [self.style(torch.cat([s, cond], dim=-1)) for s in styles]
if noise is None:
if randomize_noise:
noise = [None] * self.num_layers
else:
noise = [
getattr(self.noises, f"noise_{i}") for i in range(self.num_layers)
]
if truncation < 1:
style_t = []
for style in styles:
style_t.append(
truncation_latent + truncation * (style - truncation_latent)
)
styles = style_t
if len(styles) < 2:
inject_index = self.n_latent
if styles[0].ndim < 3:
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
else:
latent = styles[0]
else:
if inject_index is None:
inject_index = random.randint(1, self.n_latent - 1)
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
latent2 = styles[1].unsqueeze(1).repeat(1, self.n_latent - inject_index, 1)
latent = torch.cat([latent, latent2], 1)
# cond_list = self.img_unet(condition_img)
cond_img = condition_img
cond_out = self.conv_in(cond_img) ### None
cond_list = [cond_out] ### []
cond_num = 0
for from_rgb, cond_conv in zip(self.from_rgbs, self.cond_convs):
cond_img, cond_out = from_rgb(cond_img, cond_out)
cond_out = cond_conv(cond_out)
# print('Down', cond_img.shape, cond_out.shape)
cond_list.append(cond_out)
cond_num += 1
# out = self.input(latent)
# out = self.conv1(out, latent[:, 0], noise=noise[0])
# skip = self.to_rgb1(out, latent[:, 1])
i = 0
skip = None
for conv1, conv2, noise1, noise2, to_rgb in zip(
self.convs1[::2], self.convs1[1::2], noise[::2], noise[1::2], self.to_rgbs1
):
if i == 0:
out = self.comb_convs[-1](cond_list[-1])
elif i < 2 * len(self.comb_convs):
out = torch.cat([out, cond_list[-1 - (i // 2)]], dim=1)
out = self.comb_convs[-1 - (i // 2)](out)
out = conv1(out, latent[:, i], noise=noise1)
out = conv2(out, latent[:, i + 1], noise=noise2)
skip = to_rgb(out, latent[:, i + 2], skip)
# print(i, out.shape, skip.shape)
if view_feature1 is not None and i == 8:
view_feature1 = F.interpolate(view_feature1, out.shape[-2:], mode = 'bilinear') # (B, 128, 256. 256)
out = out + view_feature1
i += 2
image1 = self.iwt(skip)
i = 0
skip = None
for conv1, conv2, noise1, noise2, to_rgb in zip(
self.convs2[::2], self.convs2[1::2], noise[::2], noise[1::2], self.to_rgbs2
):
if i == 0:
out = self.comb_convs[-1](cond_list[-1])
elif i < 2 * len(self.comb_convs):
out = torch.cat([out, cond_list[-1 - (i // 2)]], dim=1)
out = self.comb_convs[-1 - (i // 2)](out)
out = conv1(out, latent[:, i], noise=noise1)
out = conv2(out, latent[:, i + 1], noise=noise2)
skip = to_rgb(out, latent[:, i + 2], skip)
if view_feature2 is not None and i == 8:
view_feature2 = F.interpolate(view_feature2, out.shape[-2:], mode = 'bilinear') # (B, 128, 256. 256)
out = out + view_feature2
i += 2
image2 = self.iwt(skip)
images = torch.cat([image1, image2], 1)
if return_latents:
return images, latent
else:
return images, None