Spaces:
Sleeping
Sleeping
import numpy as np | |
import tqdm | |
import os, glob | |
import json | |
import argparse | |
from render_utils.lib.networks.smpl_torch import SmplTorch | |
from render_utils.lib.utils.gaussian_np_utils import load_gaussians_from_ply | |
from render_utils.stitch_body_and_head import load_body_params, load_face_params, get_smpl_verts_and_head_transformation, calc_livehead2livebody | |
def load_rendering_camera(camera_fpath): | |
with open(camera_fpath, 'r') as fp: | |
camera_data = json.load(fp) | |
camera_data = camera_data[0] | |
image_size = [camera_data['width'], camera_data['height']] | |
cam_f = [camera_data['fx'], camera_data['fy']] | |
cam_pos = np.array(camera_data['position']) | |
cam_rot = np.array(camera_data['rotation']).reshape(3, 3) | |
c2w = np.eye(4) | |
c2w[:3, :3] = cam_rot | |
c2w[:3, 3] = cam_pos | |
cam_extr = np.linalg.inv(c2w) | |
cam_intr = np.eye(3) | |
cam_intr[0, 0] = cam_f[0] | |
cam_intr[1, 1] = cam_f[1] | |
cam_intr[0, 2] = image_size[0] / 2 | |
cam_intr[1, 2] = image_size[1] / 2 | |
return cam_extr, cam_intr, image_size | |
def load_camera_list(camera_fpath): | |
with open(camera_fpath, 'r') as fp: | |
camera_data = json.load(fp) | |
image_size = [camera_data[0]['width'], camera_data[0]['height']] | |
cam_list = [] | |
for cam in camera_data: | |
cam_f = [cam['fx'], cam['fy']] | |
cam_pos = np.array(cam['position']) | |
cam_rot = np.array(cam['rotation']).reshape(3, 3) | |
c2w = np.eye(4) | |
c2w[:3, :3] = cam_rot | |
c2w[:3, 3] = cam_pos | |
cam_extr = np.linalg.inv(c2w) | |
cam_intr = np.eye(3) | |
cam_intr[0, 0] = cam_f[0] | |
cam_intr[1, 1] = cam_f[1] | |
cam_intr[0, 2] = image_size[0] / 2 | |
cam_intr[1, 2] = image_size[1] / 2 | |
cam_list.append((cam_extr, cam_intr)) | |
return cam_list, image_size | |
def load_camera_data(cam): | |
image_size = [cam['width'], cam['height']] | |
cam_f = [cam['fx'], cam['fy']] | |
cam_pos = np.array(cam['position']) | |
cam_rot = np.array(cam['rotation']).reshape(3, 3) | |
c2w = np.eye(4) | |
c2w[:3, :3] = cam_rot | |
c2w[:3, 3] = cam_pos | |
cam_extr = np.linalg.inv(c2w) | |
cam_intr = np.eye(3) | |
cam_intr[0, 0] = cam_f[0] | |
cam_intr[1, 1] = cam_f[1] | |
cam_intr[0, 2] = image_size[0] / 2 | |
cam_intr[1, 2] = image_size[1] / 2 | |
return (cam_extr, cam_intr), image_size | |
def calc_offline_rendering_param( | |
body_gaussian_root_dir, ref_head_gaussian_path, ref_head_param_path, render_cam_fpath, | |
body_head_blending_param_path): | |
body_param_flist = sorted(glob.glob(os.path.join(body_gaussian_root_dir, 'posed_params/*.npz'))) | |
head_gaussians = load_gaussians_from_ply(ref_head_gaussian_path) | |
head_pose, head_scale, id_coeff, exp_coeff = load_face_params(ref_head_param_path) | |
# cam_extr_body, cam_intr_body, image_size = load_rendering_camera(render_cam_fpath) | |
cam_list, image_size = load_camera_list(render_cam_fpath) | |
body_head_blending_params = np.load(body_head_blending_param_path) | |
smplx_to_faceverse = body_head_blending_params['smplx_to_faceverse'] | |
residual_transf = body_head_blending_params['residual_transf'] | |
body_nonface_mask = body_head_blending_params['body_nonface_mask'] | |
head_nonface_mask = body_head_blending_params['head_nonface_mask'] | |
head_facial_idx = body_head_blending_params['head_facial_idx'] | |
body_facial_idx = body_head_blending_params['body_facial_idx'] | |
head_body_corr_idx = body_head_blending_params['head_body_corr_idx'] | |
head_color_bw = body_head_blending_params['head_color_bw'] | |
color_transfer = body_head_blending_params['color_transfer'] | |
smpl = SmplTorch(model_file='./AnimatableGaussians/smpl_files/smplx/SMPLX_NEUTRAL.npz') | |
head_cam_extr = [] | |
head_cam_intr = [] | |
head_cam_intr_zoom = [] | |
head_zoom_center = [] | |
head_zoom_scale = [] | |
for i, body_param_fpath in enumerate(tqdm.tqdm(body_param_flist)): | |
global_orient, transl, body_pose, betas = load_body_params(body_param_fpath) | |
# body_gaussians = load_gaussians_from_ply(body_gaussian_fpath) | |
smpl_verts, head_joint_transfmat = get_smpl_verts_and_head_transformation( | |
smpl, global_orient, body_pose, transl, betas) | |
livehead2livebody = calc_livehead2livebody(head_pose, smplx_to_faceverse, head_joint_transfmat) | |
total_transf = np.matmul(livehead2livebody, residual_transf) | |
cam_extr = np.matmul(cam_list[i][0], total_transf) | |
cam_intr = np.copy(cam_list[i][1]) | |
head_cam_extr.append(cam_extr) | |
head_cam_intr.append(cam_intr) | |
pts = np.copy(head_gaussians.xyz) | |
pts_proj = np.matmul(pts, cam_extr[:3, :3].transpose()) + cam_extr[:3, 3] | |
pts_proj = np.matmul(pts_proj, cam_intr.transpose()) | |
pts_proj = pts_proj / pts_proj[:, 2:] | |
# pts_proj = np.int32(np.round(pts_proj[:, :2])) | |
# img = np.zeros([image_size[1], image_size[0], 3], dtype=np.uint8) | |
# for p in pts_proj[::50]: | |
# p = np.clip(p, 0, image_size[0] - 1) | |
# cv.circle(img, (int(p[0]), int(p[1])), 2, (0, 255, 0), -1) | |
# cv.imshow('img', img) | |
pts_min, pts_max = np.min(pts_proj, axis=0), np.max(pts_proj, axis=0) | |
pts_center = (pts_min + pts_max) // 2 | |
pts_size = np.max(pts_max - pts_min) | |
tgt_pts_size = 350 | |
tgt_image_size = 512 | |
zoom_scale = tgt_pts_size / pts_size | |
cam_intr_zoom = np.copy(cam_intr) | |
cam_intr_zoom[:2] *= zoom_scale | |
cam_intr_zoom[0, 2] = cam_intr_zoom[0, 2] - (pts_center[0]*zoom_scale - tgt_image_size/2) | |
cam_intr_zoom[1, 2] = cam_intr_zoom[1, 2] - (pts_center[1]*zoom_scale - tgt_image_size/2) | |
head_cam_intr_zoom.append(cam_intr_zoom) | |
head_zoom_center.append(pts_center) | |
head_zoom_scale.append(zoom_scale) | |
# pts_proj = np.matmul(pts, cam_extr[:3, :3].transpose()) + cam_extr[:3, 3] | |
# pts_proj = np.matmul(pts_proj, cam_intr_zoom.transpose()) | |
# pts_proj = pts_proj / pts_proj[:, 2:] | |
# pts_proj = np.int32(np.round(pts_proj[:, :2])) | |
# img = np.zeros([512, 512, 3], dtype=np.uint8) | |
# for p in pts_proj[::50]: | |
# p = np.clip(p, 0, image_size[0] - 1) | |
# cv.circle(img, (int(p[0]), int(p[1])), 2, (0, 255, 0), -1) | |
# cv.imshow('img_zoom', img) | |
# cv.waitKey() | |
np.savez(os.path.join(os.path.dirname(body_head_blending_param_path), 'head_zoomin_render_param.npz'), | |
cam_extr=head_cam_extr, cam_intr=head_cam_intr, image_size=image_size, | |
cam_intr_zoom=head_cam_intr_zoom, zoom_image_size=[tgt_image_size, tgt_image_size], | |
zoom_center=head_zoom_center, | |
zoom_scale=head_zoom_scale, | |
head_pose=head_pose, head_scale=head_scale, head_color_bw=head_color_bw) | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
""" | |
body_gaussian_root_dir, ref_head_gaussian_path, ref_head_param_path, render_cam_fpath, | |
body_head_blending_param_path | |
""" | |
parser.add_argument('--body_gaussian_root_dir', type=str) | |
parser.add_argument('--ref_head_gaussian_path', type=str) | |
parser.add_argument('--ref_head_param_path', type=str) | |
parser.add_argument('--render_cam_fpath', type=str) | |
parser.add_argument('--body_head_blending_param_path', type=str) | |
args = parser.parse_args() | |
calc_offline_rendering_param( | |
args.body_gaussian_root_dir, | |
args.ref_head_gaussian_path, | |
args.ref_head_param_path, | |
args.render_cam_fpath, | |
args.body_head_blending_param_path | |
) | |
""" | |
python calc_offline_rendering_param.py ^ | |
--body_gaussian_root_dir ./AnimatableGaussians/test_results/huawei0425/checkpoints/AMASS__test_poses_ours_front_view/batch_750000/pca_20_sigma_2.00/ ^ | |
--ref_head_gaussian_path ./Gaussian-Head-Avatar/results/reenactment/huawei0425_self/posed_gaussians/000000.ply ^ | |
--ref_head_param_path ./Gaussian-Head-Avatar/results/reenactment/huawei0425_self/params/000000_param.npz ^ | |
--render_cam_fpath ./AnimatableGaussians/test_results/huawei0425/checkpoints/AMASS__test_poses_ours_front_view/batch_750000/pca_20_sigma_2.00/cameras.json ^ | |
--body_head_blending_param_path ./data/body_face_stitching_sr/body_head_blending_param.npz | |
""" | |