|
import spaces |
|
import gradio as gr |
|
from transformers import pipeline |
|
|
|
pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog") |
|
|
|
@spaces.GPU |
|
def predict(input_img): |
|
predictions = pipeline(input_img) |
|
return input_img, {p["label"]: p["score"] for p in predictions} |
|
|
|
_HEADER_ = ''' |
|
<h2>Toon3D: Seeing Cartoons from a New Perspective</h2> |
|
Toon3D lifts cartoons into 3D via aligning and warping backprojected monocular depth predictions.<br> |
|
Project page @ <a href='https://toon3d.studio/' target='_blank'>https://toon3d.studio/</a> |
|
|
|
**Important Notes:** |
|
- TODO 1 |
|
- TODO 2 |
|
''' |
|
|
|
def check_input_images(input_images): |
|
if input_images is None: |
|
raise gr.Error("No images uploaded!") |
|
|
|
def process_images(input_images): |
|
|
|
for image in input_images: |
|
print(image) |
|
|
|
return input_images |
|
|
|
gradio_app = gr.Interface( |
|
predict, |
|
inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"), |
|
outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)], |
|
title="Toon3D", |
|
) |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown(_HEADER_) |
|
with gr.Row(variant="panel"): |
|
with gr.Column(): |
|
with gr.Row(): |
|
input_images = gr.File(label="Upload Images", file_count="multiple", file_types=[".jpg", "jpeg", "png"]) |
|
with gr.Row(): |
|
process_data_button = gr.Button("Process Data", elem_id="process_data", variant="primary") |
|
with gr.Row(): |
|
processed_data_zip = gr.File(label="Processed Data", file_count="single", file_types=[".zip"]) |
|
with gr.Column(): |
|
with gr.Row(): |
|
labeled_data = gr.File(label="Labeled Points", file_count="single", file_types=[".json"]) |
|
|
|
|
|
|
|
|
|
|
|
process_data_button.click(fn=check_input_images, inputs=[input_images]).success( |
|
fn=process_images, |
|
inputs=[input_images], |
|
outputs=[processed_data_zip], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|