File size: 30,884 Bytes
dcd6afb 80c0743 dcd6afb 80c0743 a14ceae dcd6afb a14ceae efe8b2e a14ceae dcd6afb 80c0743 a14ceae dcd6afb a14ceae efe8b2e a14ceae dcd6afb 80c0743 dcd6afb 80c0743 dcd6afb a14ceae dcd6afb 80c0743 dcd6afb a14ceae dcd6afb 80c0743 0e61e04 dcd6afb 80c0743 6bf3b2e dcd6afb 74f54c9 dcd6afb 74f54c9 0e61e04 74f54c9 0e61e04 efe8b2e 74f54c9 0e61e04 7e9c7e5 0e61e04 74f54c9 dcd6afb 80c0743 dcd6afb 80c0743 dcd6afb 80c0743 dcd6afb 80c0743 dcd6afb 80c0743 dcd6afb 80c0743 dcd6afb 80c0743 dcd6afb 74f54c9 dcd6afb a14ceae efe8b2e a14ceae dcd6afb 80c0743 dcd6afb 80c0743 dcd6afb 80c0743 dcd6afb 80c0743 dcd6afb 80c0743 dcd6afb 80c0743 dcd6afb 80c0743 dcd6afb 80c0743 dcd6afb 76f0068 dcd6afb 1111fae dcd6afb 1111fae dcd6afb 6bf3b2e dcd6afb 1111fae dcd6afb 1111fae dcd6afb 1111fae dcd6afb 1111fae dcd6afb 1111fae dcd6afb 223ae5a dcd6afb 8498cb9 dcd6afb 8498cb9 dcd6afb 88f7e7b dcd6afb 223ae5a dcd6afb 223ae5a dcd6afb 223ae5a dcd6afb 1111fae dcd6afb 80c0743 dcd6afb 80c0743 dcd6afb 74f54c9 8498cb9 22b99cb fecbc09 22b99cb dcd6afb 80c0743 dcd6afb 80c0743 dcd6afb 88f7e7b dcd6afb 0e61e04 dcd6afb 88f7e7b dcd6afb 0e61e04 dcd6afb 80c0743 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 |
import gradio as gr
import torch
from PIL import Image
from torchvision import transforms
# from diffusers import StableDiffusionPipeline, StableDiffusionImageVariationPipeline, DiffusionPipeline
import numpy as np
import pandas as pd
import math
from transformers import CLIPTextModel, CLIPTokenizer
import os
from clip_retrieval.clip_client import ClipClient, Modality
# clip_model_id = "openai/clip-vit-large-patch14-336"
# clip_retrieval_indice_name, clip_model_id ="laion5B-L-14", "/laion/CLIP-ViT-L-14-laion2B-s32B-b82K"
clip_retrieval_service_url = "https://knn.laion.ai/knn-service"
# available models = ['RN50', 'RN101', 'RN50x4', 'RN50x16', 'RN50x64', 'ViT-B/32', 'ViT-B/16', 'ViT-L/14', 'ViT-L/14@336px']
# clip_model="ViT-B/32"
clip_model="ViT-L/14"
clip_model_id ="laion5B-L-14"
max_tabs = 10
input_images = [None for i in range(max_tabs)]
input_prompts = [None for i in range(max_tabs)]
embedding_plots = [None for i in range(max_tabs)]
embedding_powers = [1. for i in range(max_tabs)]
# global embedding_base64s
embedding_base64s = [None for i in range(max_tabs)]
# embedding_base64s = gr.State(value=[None for i in range(max_tabs)])
debug_print_on = False
def debug_print(*args, **kwargs):
if debug_print_on:
print(*args, **kwargs)
def image_to_embedding(input_im):
# debug_print("image_to_embedding")
input_im = Image.fromarray(input_im)
prepro = preprocess(input_im).unsqueeze(0).to(device)
with torch.no_grad():
image_embeddings = model.encode_image(prepro)
image_embeddings /= image_embeddings.norm(dim=-1, keepdim=True)
image_embeddings_np = image_embeddings.cpu().to(torch.float32).detach().numpy()
return image_embeddings_np
def prompt_to_embedding(prompt):
# debug_print("prompt_to_embedding")
text = tokenizer([prompt]).to(device)
with torch.no_grad():
prompt_embededdings = model.encode_text(text)
prompt_embededdings /= prompt_embededdings.norm(dim=-1, keepdim=True)
prompt_embededdings_np = prompt_embededdings.cpu().to(torch.float32).detach().numpy()
return prompt_embededdings_np
def embedding_to_image(embeddings):
# debug_print("embedding_to_image")
size = math.ceil(math.sqrt(embeddings.shape[0]))
image_embeddings_square = np.pad(embeddings, (0, size**2 - embeddings.shape[0]), 'constant')
image_embeddings_square.resize(size,size)
embedding_image = Image.fromarray(image_embeddings_square, mode="L")
return embedding_image
def embedding_to_base64(embeddings):
# debug_print("embedding_to_base64")
import base64
# ensure float32
embeddings = embeddings.astype(np.float32)
embeddings_b64 = base64.urlsafe_b64encode(embeddings).decode()
return embeddings_b64
def base64_to_embedding(embeddings_b64):
# debug_print("base64_to_embedding")
import base64
embeddings = base64.urlsafe_b64decode(embeddings_b64)
embeddings = np.frombuffer(embeddings, dtype=np.float32)
# embeddings = torch.tensor(embeddings)
return embeddings
def is_prompt_embeddings(prompt):
if prompt is None or prompt == "":
return False
try:
embedding = base64_to_embedding(prompt)
return True
except Exception as e:
return False
def safe_url(url):
import urllib.parse
url = urllib.parse.quote(url, safe=':/')
# if url has two .jpg filenames, take the first one
if url.count('.jpg') > 0:
url = url.split('.jpg')[0] + '.jpg'
return url
def main(
# input_im,
embeddings,
n_samples=4,
):
debug_print("main")
images = []
for url in test_images_urls:
import requests
from io import BytesIO
from PIL import Image
try:
response = requests.get(url)
if not response.ok:
continue
bytes = BytesIO(response.content)
image = Image.open(bytes)
if image.mode != 'RGB':
image = image.convert('RGB')
# width = 336
# aspect_ratio = float(image.height) / float(image.width)
# height = int(width * aspect_ratio)
# image = image.resize((width, height), Image.Resampling.LANCZOS)
images.append((image, "title"))
except Exception as e:
print(e)
return images
embeddings = base64_to_embedding(embeddings)
# convert to python array
embeddings = embeddings.tolist()
results = clip_retrieval_client.query(embedding_input=embeddings)
images = []
for result in results:
if len(images) >= n_samples:
break
url = safe_url(result["url"])
similarty = float("{:.4f}".format(result["similarity"]))
title = str(similarty) + ' ' + result["caption"]
# we could just return the url and the control would take care of the rest
# however, if the url returns an error, the page crashes.
# images.append((url, title))
# continue
# dowload image
import requests
from io import BytesIO
try:
response = requests.get(url)
if not response.ok:
continue
bytes = BytesIO(response.content)
image = Image.open(bytes)
if image.mode != 'RGB':
image = image.convert('RGB')
# width = 336
# aspect_ratio = float(image.height) / float(image.width)
# height = int(width * aspect_ratio)
# image = image.resize((width, height), Image.Resampling.LANCZOS)
images.append((image, title))
except Exception as e:
print(e)
return images
def on_image_load_update_embeddings(image_data):
debug_print("on_image_load_update_embeddings")
# image to embeddings
if image_data is None:
# embeddings = prompt_to_embedding('')
# embeddings_b64 = embedding_to_base64(embeddings)
# return gr.Text.update(embeddings_b64)
# return gr.Text.update('')
return ''
embeddings = image_to_embedding(image_data)
embeddings_b64 = embedding_to_base64(embeddings)
# return gr.Text.update(embeddings_b64)
return embeddings_b64
def on_prompt_change_update_embeddings(prompt):
debug_print("on_prompt_change_update_embeddings")
# prompt to embeddings
if prompt is None or prompt == "":
embeddings = prompt_to_embedding('')
embeddings_b64 = embedding_to_base64(embeddings)
return gr.Text.update(embedding_to_base64(embeddings))
embeddings = prompt_to_embedding(prompt)
embeddings_b64 = embedding_to_base64(embeddings)
return embeddings_b64
def update_average_embeddings(embedding_base64s_state, embedding_powers):
debug_print("update_average_embeddings")
final_embedding = None
num_embeddings = 0
for i, embedding_base64 in enumerate(embedding_base64s_state):
if embedding_base64 is None or embedding_base64 == "":
continue
embedding = base64_to_embedding(embedding_base64)
embedding = embedding * embedding_powers[i]
if final_embedding is None:
final_embedding = embedding
else:
final_embedding = final_embedding + embedding
num_embeddings += 1
if final_embedding is None:
# embeddings = prompt_to_embedding('')
# embeddings_b64 = embedding_to_base64(embeddings)
# return gr.Text.update(embeddings_b64)
return ''
# TODO toggle this to support average or sum
# final_embedding = final_embedding / num_embeddings
# normalize embeddings in numpy
final_embedding /= np.linalg.norm(final_embedding)
embeddings_b64 = embedding_to_base64(final_embedding)
return embeddings_b64
def on_power_change_update_average_embeddings(embedding_base64s_state, embedding_power_state, power, idx):
debug_print("on_power_change_update_average_embeddings")
embedding_power_state[idx] = power
embeddings_b64 = update_average_embeddings(embedding_base64s_state, embedding_power_state)
return embeddings_b64
def on_embeddings_changed_update_average_embeddings(embedding_base64s_state, embedding_power_state, embedding_base64, idx):
debug_print("on_embeddings_changed_update_average_embeddings")
embedding_base64s_state[idx] = embedding_base64 if embedding_base64 != '' else None
embeddings_b64 = update_average_embeddings(embedding_base64s_state, embedding_power_state)
return embeddings_b64
def on_embeddings_changed_update_plot(embeddings_b64):
debug_print("on_embeddings_changed_update_plot")
# plot new embeddings
if embeddings_b64 is None or embeddings_b64 == "":
data = pd.DataFrame({
'embedding': [],
'index': []})
update = gr.LinePlot.update(data,
x="index",
y="embedding",
# color="country",
title="Embeddings",
# stroke_dash="cluster",
# x_lim=[1950, 2010],
tooltip=['index', 'embedding'],
# stroke_dash_legend_title="Country Cluster",
# height=300,
width=0)
return update
embeddings = base64_to_embedding(embeddings_b64)
data = pd.DataFrame({
'embedding': embeddings,
'index': [n for n in range(len(embeddings))]})
return gr.LinePlot.update(data,
x="index",
y="embedding",
# color="country",
title="Embeddings",
# stroke_dash="cluster",
# x_lim=[1950, 2010],
tooltip=['index', 'embedding'],
# stroke_dash_legend_title="Country Cluster",
# height=300,
width=embeddings.shape[0])
def on_example_image_click_set_image(input_image, image_url):
debug_print("on_example_image_click_set_image")
input_image.value = image_url
# device = torch.device("mps" if torch.backends.mps.is_available() else "cuda:0" if torch.cuda.is_available() else "cpu")
device = "cuda:0" if torch.cuda.is_available() else "cpu"
from clip_retrieval.load_clip import load_clip, get_tokenizer
# model, preprocess = load_clip(clip_model, use_jit=True, device=device)
model, preprocess = load_clip(clip_model, use_jit=True, device=device)
tokenizer = get_tokenizer(clip_model)
clip_retrieval_client = ClipClient(
url=clip_retrieval_service_url,
indice_name=clip_model_id,
use_safety_model = False,
use_violence_detector = False,
# modality = Modality.TEXT,
)
# results = clip_retrieval_client.query(text="an image of a cat")
# results[0]
examples = [
# ["SohoJoeEth.jpeg", "Ray-Liotta-Goodfellas.jpg", "SohoJoeEth + Ray.jpeg"],
# ["SohoJoeEth.jpeg", "Donkey.jpg", "SohoJoeEth + Donkey.jpeg"],
# ["SohoJoeEth.jpeg", "Snoop Dogg.jpg", "SohoJoeEth + Snoop Dogg.jpeg"],
["pup1.jpg", "", "Pup no teacup.jpg"],
]
# image_folder = os.path.join("file", "images")
image_folder ="images"
# image_examples = {
# "452650": "452650.jpeg",
# "Prompt 1": "a college dorm with a desk and bunk beds",
# "371739": "371739.jpeg",
# "Prompt 2": "a large banana is placed before a stuffed monkey.",
# "557922": "557922.jpeg",
# "Prompt 3": "a person sitting on a bench using a cell phone",
# }
test_images_urls = [
"https://www.mdig.com.br/imagens/bichos/caes_miniatura_chicara_07.jpg",
"https://i.pinimg.com/236x/04/ac/0e/04ac0e05964b75c9db59de94c571339e.jpg",
"https://i.pinimg.com/236x/a1/55/9e/a1559e56ae5fb6e4d19c43c6396b5940--teacup-yorkie-yorkie-puppy.jpg",
"https://i.pinimg.com/236x/11/c4/51/11c4518febb0869bd2b2d391d0753f44.jpg",
]
tabbed_examples = {
"Pups": {
"Pup1": "pup1.jpg",
"Prompt": "Teacup Yorkies",
"Pup2": "pup2.jpg",
"Pup3": "pup3.jpg",
"Pup4": "pup4.jpeg",
"Pup5": "pup5.jpg",
},
"Embeddings": {
"Black & White": "F0kxPHAqE7t3DoY79djWOwA6Cb2hjK88EkuIvXdEgTzS2yY93WXvOsKffL08qjU9oGVJvZtXD7wiQ-u7QTLhvGRqozpSFqo8fCMaOy42NDyyXCC9ls69Olk_A7zJ6Ik97AwLOyNjCryYr4W8kREmPfIOPb0xrde7137Fu3Jr5bwGKGU90T-lvI1pMT1ftz-9qy3vPMTnRDzx97C8fRWjPGbQU71d6f26ASZyPdg3Qrx-saS9FaAbu83DK732Ry-9WQ7HPPPiwTzY4gS97gc1PGXmRrzsZUS9kQwmPKDZvzw4F4a9zElPPQjmdj2Lqak9SHFXPJmPvDwRLPU7YvqHPV7OYDx7K-q8wfdIveWEXT1kYE289sfOOwH6YbuID129kMivu1uvCb35jGi9shisPNsXz7zb0xk99u_ivE68QL2ibjo8jCAmvPIz5Lyv9kU8rUIKPbCciD23RQG9P48tPfEpsLwbZkE8wtjHvHqvB72k_Au818IRO2pLHz2U2yq9M1_hvTG2FD05si275m4rvL85ojtDSCo9xWclvTOEgLrMt449xggSvFQzT72wtOw7mtgLvRe-N732MlW8bGIWvMi_m7p1XSA91Sq2PHDDxrxcMC29RPoJPVeIzTyCC448PVequz8rLz2Rsnk6yayDvVjAJjuJxqe9ivRpvVEKjTwwxoM9OKOtPUjlhT20uYO8ynh2PYLVZjwREFS8wWWIPLZGrz2oNxy7GR4gvaENaDzBxJu8ZdYGtw7B7rxG2sC7mP0QPYkKXbzbh4E7HrsqvJ64P73AL_Y8I6L-vB59jjyVE8O7jshZOw19JLwQD1A9NG3xu00JHr08iBC9WANYvBe-N73tpoS6dOZaPT1Btzy9kcI8MzNRvNH7hDuMnwK8o88MvZWU5rwDUhk9sBEPPGi_DL0BY8u8-cKPvGqIjbw90_c8y19CvVYT8bxLLxU920igvX_DgTyAzh-8q2lZOy-UmbxXnlU8or9cPJruuj3HJHy9a5-ZPUJ717w9frq88QG2vIwxQz2dIam8ET5Uu2ftYzsxRxI9nDwcPDQz5jxtrf079M5rPAVIrryU_U87fslzPSTkQrxpCK08VY1NvdsXTzuwsz48rvvavIsTY705S2G936llvTsk0bwQhEG6zoYovD0TXjoseXq9bt45PfQJqDzYp_I8z3WLvGTflLwWLui78YjDvAx4Trw2-yO9oXunvADWCj1wlQQ8NmF-PG1uszzCusW8jujMO3W637yShqy7O4loPHI4ybw4yr271thYPB9hAj0PwUQ8L0fRPLkzlD091oY88PvBOjv4wDyBMh69eUsePfOb6DyI4Zq8TxH-u0uCi702EZc8kqoQvQQkAbwz9AY841FFvebosTs2z708FpwnPUqOPb0zlQi9KNeWvBbeALwy70U91KD_PHPxSTwi8wO8aroMPYpCdb1QLDI9VgwAvL-JKz1I1Za8EshhO-EUbD2cpQW9UEeQvA8vBD0KvYq6ZJ6DvWZsVb1UdT07gHVPPUM-VLxbYZM8SoXXPFP6iDwC-AU9_5p4vIuPKD0d7x26nrBSvWaCxjn2aCY9iaLDvD8yYbzQPzo9BihlPaxUar2IeMa7zJniOsRbiD0zigS9P-TqvJMO7bsuR3u8KS_WvEL1XT3vWoG7OmGqvBsJdb3_vlE5js_2vP-wF70sbJq8XqWJPOOOM71wkJk9WJRqvA7XNzqVV-O8OjBuPW5_O71u-QK92baeOovezDw-NPS8G-dkvRx_UD1xzYe94dxoPM0_-TzqrSE8DUWhPLz6qzwr4TW9yOPIO5FmYzyM_oC9fj8gvWtdljuotQg8lwlDPPPRubw4Bxc8f6y5u_x2trxXH2Q81m2TPadef7yfNwc9AlIuvKNWXr2A2c28s6e1uspCsrzBHtk66N90PeUS-TqID109vydpu8vDVb1ZknC97JqRu18mLT1hIZg8CNmBt43v1DsezNw73krSPH_eo7yAPlA99-k0PNBamLw16jA90kSlu-pTIz0DPLs8sdQLvMP3Mz3_zCS6UOMmvX4mFr3OhtK7tjA8PT6wJL2DTy69bE17vCFNVr1LJVS8zIuouVlRzjy34jA9CV-QPD5j3DwrYu68CD4uvZAP57zhOQs8krApvOvEV707mAC7giNdPYjSbjxfdLg8gZacu3ritLz6NPI7KDTBvEEhxDzihwE8pX0vPWS4GTtZfk28YPBwPQMaFr3Jqxs8t5bsuw3moj0q2q07AuRuPDSLnbw1-zi961XVuq_qKL1ofAW8CwGBvVScoz3uDny9px98PA35cTxwaYk6jwUJPQUyZbx2mVM9SMqnPdPMejxuREA9dK0UPe4VCLrn6vg8LBTOO8c2v7yL1wW9PUWJPIqrybzN3h67_-sSvVaMHz2DKno8uDCSPN3ZiL2B5JK9-CsOPNdBrbzEIPY7gCjdvEAJCjv3LX-8NjupvTIxijw55-I7CgjIvOx1Hj33TUg81is6vLs8Gj1K7VA8nyetPXnXAbgJ1US92c7tPNAYP7zzeVi9eaVGvaT8izv9_pi92S3sPCywZD3ihPK8pJ2NPZe0BT3EYSG9ahv8uic4k7wNc-M8bX9QvTUsirzUYaC8LCVrPS5Y7jyqsnk4UYbaPLF8P70_x7C80qB_u5jBjDzQqCO9vqn8vCUcMb3Z6TY9ZLRcPYLJHz3ZPJg7OMW9O23YBr3YeZu89uKCPTdrqjuwB-O8ZL82vJ7ClbvHOq-76d4xvITNT7z2x6Q8NQAkvatTUb2PhlY8NCe0OzOLR71EliA8-W6APBeomjstTFG99YfouysDNT2R3b28y7K4vLt2-bvKf6C9bf6XvH8EBrzZMak8BNpuPLLJhz1G6gU9UouwPE-QRT1lKKA8bjaGO9JQGDwpjtQ7yi_BvLv_ATyE1Ju99_8nPRh1gr1Vyyk6Q_WzPc60fz2-XoC9nsTxvJfFDT2zS9m8kx-2u3mlxjyfqf68Tje9PcK_G7v_F467sdXOvIzZdr3LONw8ngu2vF8Rgr35KP87TzCEvQNZS7xGrkU976MhPTOLsr2woYg7OGAmvRPIzLxLtaM7ofWDPXREq7wSwsi7T7dVPEiO5zwaOtu8OudNvHa5nLxYLpC9h445OydP3rsAwMG7rV9ZvWnBfb0Gwoo8ZwPXvPa72ztudDc9l4gfPJTxsjxCioM90JIwPaFs5rxs46q8yGKQux4injyRLZ281PZivejwfLwwZGE8NTinvDfsdzwSkMk8hMtmPSTkrbyigau8L4kVvJntIrrwqTo8dNSPvctfQruCT0M8lm1Wu6mpPD2Mmpc971YEOY4sGT2Be1M9rewmPfCeS7yGn9Y8KXYaPVbF0DvtdQm9r2bhvPwGGz1jNOe8KQ0xPbEPOz38nIO8PEQaPKFsZj30PNW9Be4FvRVfzj2HUvq7aJiRPB-lNz1GIze87PZrPKefPz3g_ni8VfOPvYRFbb1j-7W8_Z0xvVLvrrz8kZQ9_2dLPbAC4zxthKa8fzwJvff_p7waPzG9FV_jvLKlDr3ED249QDy3PD1SabxxX0i9M0hAvVL1Rz0cGCG9coYuvY--bj1sKhO9d_jmPHowQL0Bm_g863DIPUM-VD0OVhQ8I5H2PLwD_rxb5zY7MJqdOy6wOrxhIS09yOU7PT74ljwRi_M9WYDLvAtKIb01Yf68WfwQPf2YsTv0-vu8bp_qPHKDrL1z1KS8Xf_bPDCQXD1oIZE9lGFjuzaN5LzWIXk8nJsvPSgdtTyqEEq9286EOyZm6rtF8DM95ugxugOlDz115YI86aumO388CT1SPRC8MtM5vB6liDwqxT06Q5agvJ-TAz0CikY9MxbBvP2_QTwxhsc8NLeDOzql9LxJxmq8MSWCPfVtkTzuo3W78-gSvenIvrxOofe8zr5APQBnCL3z4us7cKEhvQ4lWL0FTwK9cMMcPHpNZT3G1hK9XOKhvZF2nz1mRdq8dgeou_fTQTz43968VndaPNdZ_DsoxLo8n0gPvTcp0Tq17Js85EnDPWiyZ733Fsk8AFwuPGuUv7sYHcs8GGtBvZK7dju76bi9KHsavWsqEzwk0xA8",
"Fire": "VsgiPPjckjuCP-q8fs25PC1DT7z-1li7_bAkvPkCrDx4W9E7V9sYvf3_D72Oyau8vXGFPVCSFD00qhO9-mSEPGQ8kT1_pN67qvXxvDwZDb1nLnO8TbvSO8Gn0j3OdUc9dNaqPP2wJL170AQ9CX-0PJu1jTycyBW9JAVvvAtWPjyF1pe8o4awO12vBrvkJ0O8EtsBPUszvbzduJO8zghmPeIBezyBaKE8STaIPBUnkDq7D1q8swJCPUR1kLy9qmU7itcaPZ2flr2fOlg7gcpKvQh__DzNAEM8xqSJPVNTb7s7aMA7cJ3sPK8ujDx4W1G8-RVhvcra-jxRuD-9RTkAPdr0dDx9a7Q7Y1q9ux2WLT0QBJO8DWkHPUE8pby9Ioi8kFydPJX0Xbzwpme8YeVuvL0iiD0q2Ti9oE1OPGXPlL0qswS805g7vWb1pD1ivPi8oOskvAm7BT323P685LIju0N1WL0WYLq80sEWPShRx7zTSVC83qLkvF-_1bwZ1RG9833EvIRlVr0jo2m8xxmpvGXirjyLTDo9hRa-PKAnGj2tVwK9aGogvay5xjxvZB69MoSnPHSHmzxcc1k79hhQvfIufbyH7Zo9E2NNvRq_0Dz0o_i8Tx2iPJb0lTypgPY8g90cPV7VljuyyZc7gXvfPLjW97x5W6097CGdvJhT9Lk7yum8AJsbPP90izw3uj49qUeEvQE277xqQaE70UybPIw2-Tq1O2y8yD9dPD0_wbxZY6485v7DvN3LP7vsg8Y8OZE_PehzGzwNj1-86kouPW2Ni70FM9w7wDIzvHUibzwqO_Q7c4djvc2eh73TIwq9icSkvA7x0rzb9Ky9Lpp4vaSs0rwUdkM6WLK9PFhQOL2vZ348TUYPveAqVrw3HOi87JbyPPGmXj06foG6E1CPPMgD-rx7gT29kgpMPau5fLxaTe271DaSvUjUpr0v6a28hLRBvS-tbjznpHy8rbm0uic-UTwCwZm8UOEavCZnmrz9Ek69cU65vcUGabznc0g8oZwDPWVX8ry3YVi9MPwRPZqilzu_H-E8m7WNOs-INLy-5pI85ZzivLewQ7wlVLY9WnaAPOMBMz1j-JM8MF47Pfe2gjuxjWq5LWEqPRohejwumni84ow3vBoOvLzHyqu8Z7mvvB1t9jzE83I83LglvQRv4zxAx448KRUuvI3UGT0Ojxe9IJM-O-fCzjwKVv29DMtUPX6R6LwDIwQ9gwNRPaOG1LzCSsA8f20AvbUoLj1SyzU9o3MNPJd8cz0mBQO8A0kvPVhQFDx-axC9Ts7IPEtkxDyxjeq6O7fPPI1Jbz3VDS49UQcrOsPg_LwpUSM8VwFxve7P5rwOQCw61uTbu1WMdbxV22A8IM-PPKsxHz1U8SG9cmGvvD1Kgjx3cRI9WMVXvPigwbxR9JA9zoj8vJJGlDzWlXC9N7q-vFGlAT0Ywps6XoYrvD946zy3_668ZZNnu4OhSz3WqHi9dl4cuE1ZKb3fj4I82s4KvILKJr3hjFu8w35TPZDker20d2E9DS22PRBmmLxmaug8D_EKPRUnEDsbcB2911n7u0PEwzyl-yu9lWl9vFFWljzP_Xc7i5slvU5_yzzJtGo80RBKvcKUFLxQkgs8jXImvDUyRLxjWr07RxCcPfPfybw_eGu8HZaJu9VvPDzCIwK8XjecPC9LRT56bkc9tWSRvFD0Rr2QgtE77x7SvPbUkzyikR48vVv6PPSQujuS96i9G10Du50wKj0UdsO5NIFcvGxnjbtLRnu9ZvVIvDI1vLyDjo28URppPCegVj1oLk-9u5oEPWzcrLspApQ9W4mavJEzHrufOti7RHWQPF9warw1vZI8vaplugiojzxjHuw8LSXrPH0v9bwwmoM9Dt6CPPIufTwHu_G8XK8qve6psrrvHtI60l8Rvdwt6byZj7M8VVMDPI3nxboqd7M84gFXu4-rI71DE688wEXxPIxfsLycKq07rWrJvAowJb1mG_28M-YRvYUWtTxq1Da95v7DvJHRKj0VJxC7QU_sPEdyxbyw8hY9xUIWPaYhPDtVtay7faepvBg3Tb1Ai2E8Kuz2vNOrebygnF09X13QvEN1xjy4dM67XE0cvE67Lr0yhCe9rbmiPZvuf7yT2YW8_E5DvR8TXr1QVt46iLGuPJqXTb3Z7DY9LunjPNkw2Lw3uj499ZCEPbLJl7vefAw9TWznvJ8nPr0OLZI8Ff7Yva0IoLsEmIg9x__juwaoe7vmmgY97vgdPUIAuTwOQCw79-_0O_K5ubxN96M8GkqNPY2YbL0bcJ08y3gtPK0IoDucAfY8uLAfPbDceb0c0iK9ysdgOQgKFbtkCwq-NqfIvGD7Aj3cuEk8z8QFO7CjKzwNyzA9aslsPdRv8ryQq4i8e7LEPLaKD7v7KI-9fJSzPO6WmLy27Dg8TNGTvOSyIz0arLa9zRNdPW7G_TxUUzm958JOPbrWCz3L2kS9tU50PZ3ut7yenwS9rQggvH_1-LxCTxK8OeAqPSvsUr3Ijja9Tn9LPYixrjuD3Qq9HzyVPGgbNbzyV7S8UQerOj5l9bymITw8H4BIu3g1Hb3KePU8F9VQvZvIp7yN50W8poNlvB5alL3M7cy8IUSLO0HaH70NLba8PI70vGq2QLwRjMy8YF0aPZmPIbzVvqe9MHF5PcjdobuWuM08rQggvaMRiL1Tokg97-JcvMgsjb0-8A09bNysPbrpJTxQQyC9e-NUvF8OZTz_Xve85CdDPEXB-DyPb9s8XdVePVRAjbx3SFu8lM4pvHTWhjwgk746a2dDvF2vBjw00Gs9akEhPE3kCT2PmJK8D2bgPIS0Qb2xRY-8-jdbPQuloLvyzFO9uRKKPHaEdD12Xhy8Je0Uve-TcT1lMRo9PlI3PafSCLhy1nK8qLzrPA0E_zzkJ0M8eUiTPf1hubxkqYS9IhvUPPeNyzz7O006wmvdOxX-2L0EDcy8zcRxvTp-gT0f4nE7u3HfPB3lBj2Pq6w8FHZDvZlANj0OQKw7z3WavIVlMj1B2qi7jP0GvMBF8btDOWM8w-B8PX4cpb2tkP08YqnwPHLW8jzPJgs9-mSEvbf_rrzN7QS845-tvP3_j72M_Ya7ZkQ0vczajryGKTS9RMSNvS-Hnz3aQ_I8IIAkPbV3vTx8Mgq9z4i0vP_pTr1UZmU8lDDTOwl_ND1zdKU8G3AdPUlJIr0aIfo77x7Su1Zmi7wmK7e90oVFvSMuSj0WwuO85WvJPKa_ErwarD88mFN0OkJPpLrB0Am8hviavMhl_7xIIxK98sxTPKZwJzz8YW89lGwAvFIaIbx2QLi8sY3qvMTzcj37O006BPoxvVrFjzwPU6K81tFBPGzcrLqmg-W87ZY8vObYj7wEvjy9cZ0ku48Nsjtmpl09Z71gvcOnCrzPxAW9e24RPWUeAL3WIAm9YHDYPCTflrrcuEk8Q2KaPS-tyrze3hG936JAvGhqoDy_gWa9v1uyOw6PFz2QglG86DfuPEX9yTzazhw9sFSuPCEI3ru4_wq9QrHNPDwZDTz5UTK9DS02vYLw2jy_qh09v1syPNP6Ur0HMwu9HVpcvVgU57wdNJY8uvy_PO6AezxBPK68vHG7vEHahLvnr7S9DAcCvdWCerz9Es67lB25vO-T8bsUFJq84oyTvV8O5TsCIzG7gcrKPH5rkLvQrsQ8KaCOvCXJ1bsmBQO9XP4nPesle71QMJi8qm0Uu8YZTb3nwjw9C2lzvOSyI7xXPcI8sHp0PZZDk7xvUQS9-cZRPZCC0TvoERY9mrVVPOvS-Twez_u72jA0vSo74rwOQCy7nrIMvYcA4juuzKq8C0MJPXRLbj2yjU88FMUuvSv_bD3_1pC9yfAXva_yOj2tCKC769JePRF5DjzIixi9gBl-Pe-8KD0G5Ci9Cc7DPKxEJz1grJc9La4KvaERWb1nppU7rd_oPDdFn7yatag8HSnDvIxfDD0VTcQ83_EHPeBmJ709LCe99qOMvApDP72cAfa8YCHbPGpBITpXsuG8qfiGvKNzBD2QXAI9o5luvXGKijzaQ_K8R5h5PVJpjLug_mI9ZVfyPC_WAT0AI3m9",
},
"Portraits": {
"Snoop": "Snoop Dogg.jpg",
"Snoop Prompt": "Snoop Dogg",
"Ray": "Ray-Liotta-Goodfellas.jpg",
"Ray Prompt": "Ray Liotta, Goodfellas",
"Anya": "Anya Taylor-Joy 003.jpg",
"Anya Prompt": "Anya Taylor-Joy, The Queen's Gambit",
"Billie": "billie eilish 004.jpeg",
"Billie Prompt": "Billie Eilish, blonde hair",
"Lizzo": "Lizzo 001.jpeg",
"Lizzo Prompt": "Lizzo,",
"Donkey": "Donkey.jpg",
"Donkey Prompt": "Donkey, from Shrek",
},
"Transforms": {
"ColorWheel001": "ColorWheel001.jpg",
"ColorWheel001 BW": "ColorWheel001 BW.jpg",
"ColorWheel002": "ColorWheel002.jpg",
"ColorWheel002 BW": "ColorWheel002 BW.jpg",
},
"CoCo": {
"452650": "452650.jpeg",
"Prompt 1": "a college dorm with a desk and bunk beds",
"371739": "371739.jpeg",
"Prompt 2": "a large banana is placed before a stuffed monkey.",
"557922": "557922.jpeg",
"Prompt 3": "a person sitting on a bench using a cell phone",
"540554": "540554.jpeg",
"Prompt 4": "two trains are coming down the tracks, a steam engine and a modern train.",
},
# "NFT's": {
# "SohoJoe": "SohoJoeEth.jpeg",
# "SohoJoe Prompt": "SohoJoe.Eth",
# "Mirai": "Mirai.jpg",
# "Mirai Prompt": "Mirai from White Rabbit, @shibuyaxyz",
# "OnChainMonkey": "OnChainMonkey-2278.jpg",
# "OCM Prompt": "On Chain Monkey",
# "Wassie": "Wassie 4498.jpeg",
# "Wassie Prompt": "Wassie by Wassies",
# },
}
tile_size = 110
image_examples_tile_size = 50
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=5):
gr.Markdown(
"""
# Soho-Clip Embeddings Explorer
A tool for exploring CLIP embedding space.
**Example #1** - removing the Teacup from the image
* Add the image Pups->Pup1 on Input tab 1
* Add the text prompt "Teacup." on Input tab 2
* Make the Input 2 embeddings negative by setting the power to -1
* Click the "Search Embedding Space" to see the results
""")
with gr.Column(scale=2, min_width=(tile_size+20)*3):
with gr.Row():
with gr.Column(scale=1, min_width=tile_size):
gr.Markdown("#### Pup in cup:")
with gr.Column(scale=1, min_width=tile_size):
gr.Markdown("#### - 'Teacup'")
with gr.Column(scale=1, min_width=tile_size):
gr.Markdown("#### = Pup")
for example in examples:
with gr.Row():
for example in example:
with gr.Column(scale=1, min_width=tile_size):
if len(example):
local_path = os.path.join(image_folder, example)
gr.Image(
value = local_path, shape=(tile_size,tile_size),
show_label=False, interactive=False) \
.style(height=tile_size, width=tile_size)
with gr.Row():
for i in range(max_tabs):
with gr.Tab(f"Input {i+1}"):
with gr.Row():
with gr.Column(scale=1, min_width=240):
input_images[i] = gr.Image(label="Image Prompt", show_label=True)
with gr.Column(scale=3, min_width=600):
embedding_plots[i] = gr.LinePlot(show_label=False).style(container=False)
# input_image.change(on_image_load, inputs= [input_image, plot])
with gr.Row():
with gr.Column(scale=2, min_width=240):
input_prompts[i] = gr.Textbox(label="Text Prompt", show_label=True, max_lines=4)
with gr.Column(scale=3, min_width=600):
with gr.Row():
# with gr.Slider(min=-5, max=5, value=1, label="Power", show_label=True):
# embedding_powers[i] = gr.Slider.value
embedding_powers[i] = gr.Slider(minimum=-3, maximum=3, value=1, label="Power", show_label=True, interactive=True)
with gr.Row():
with gr.Accordion(f"Embeddings (base64)", open=False):
embedding_base64s[i] = gr.Textbox(show_label=False, live=True)
for idx, (tab_title, examples) in enumerate(tabbed_examples.items()):
with gr.Tab(tab_title):
with gr.Row():
for idx, (title, example) in enumerate(examples.items()):
if example.endswith(".jpg") or example.endswith(".jpeg"):
# add image example
local_path = os.path.join(image_folder, example)
with gr.Column(scale=1, min_width=image_examples_tile_size):
gr.Examples(
examples=[local_path],
inputs=input_images[i],
label=title,
)
else:
# add text example
with gr.Column(scale=1, min_width=image_examples_tile_size*2):
gr.Examples(
examples=[example],
inputs=input_prompts[i],
label=title,
)
with gr.Row():
average_embedding_plot = gr.LinePlot(show_label=True, label="Average Embeddings (base64)").style(container=False)
with gr.Row():
with gr.Accordion(f"Avergage embeddings in base 64", open=False):
average_embedding_base64 = gr.Textbox(show_label=False)
with gr.Row():
with gr.Column(scale=1, min_width=200):
n_samples = gr.Slider(1, 16, value=4, step=1, label="Number images")
with gr.Column(scale=3, min_width=200):
submit = gr.Button("Search embedding space")
# with gr.Row():
# output = gr.Gallery(label="Closest images in Laion 5b using kNN", show_label=True)\
# .style(grid=[4,4], height="auto")
output = gr.Gallery(label="Closest images in Laion 5b using kNN", show_label=True)\
.style(grid=[4,4], height="auto")
submit.click(main, inputs= [average_embedding_base64, n_samples], outputs=output)
embedding_base64s_state = gr.State(value=[None for i in range(max_tabs)])
embedding_power_state = gr.State(value=[1. for i in range(max_tabs)])
def on_image_load(input_image, idx_state, embedding_base64s_state, embedding_power_state):
debug_print("on_image_load")
embeddings_b64 = on_image_load_update_embeddings(input_image)
new_plot = on_embeddings_changed_update_plot(embeddings_b64)
average_embeddings_b64 = on_embeddings_changed_update_average_embeddings(embedding_base64s_state, embedding_power_state, embeddings_b64, idx_state)
new_average_plot = on_embeddings_changed_update_plot(average_embeddings_b64)
return embeddings_b64, new_plot, average_embeddings_b64, new_average_plot
def on_prompt_change(prompt, idx_state, embedding_base64s_state, embedding_power_state):
debug_print("on_prompt_change")
if is_prompt_embeddings(prompt):
embeddings_b64 = prompt
else:
embeddings_b64 = on_prompt_change_update_embeddings(prompt)
new_plot = on_embeddings_changed_update_plot(embeddings_b64)
average_embeddings_b64 = on_embeddings_changed_update_average_embeddings(embedding_base64s_state, embedding_power_state, embeddings_b64, idx_state)
new_average_plot = on_embeddings_changed_update_plot(average_embeddings_b64)
return embeddings_b64, new_plot, average_embeddings_b64, new_average_plot
def on_power_change(power, idx_state, embedding_base64s_state, embedding_power_state):
debug_print("on_power_change")
average_embeddings_b64 = on_power_change_update_average_embeddings(embedding_base64s_state, embedding_power_state, power, idx_state)
new_average_plot = on_embeddings_changed_update_plot(average_embeddings_b64)
return average_embeddings_b64, new_average_plot
for i in range(max_tabs):
idx_state = gr.State(value=i)
input_images[i].change(on_image_load,
[input_images[i], idx_state, embedding_base64s_state, embedding_power_state],
[embedding_base64s[i], embedding_plots[i], average_embedding_base64, average_embedding_plot])
input_prompts[i].change(on_prompt_change,
[input_prompts[i], idx_state, embedding_base64s_state, embedding_power_state],
[embedding_base64s[i], embedding_plots[i], average_embedding_base64, average_embedding_plot])
embedding_powers[i].change(on_power_change,
[embedding_powers[i], idx_state, embedding_base64s_state, embedding_power_state],
[average_embedding_base64, average_embedding_plot])
with gr.Row():
gr.Markdown(
"""
My interest is to use CLIP for image/video understanding (see [CLIP_visual-spatial-reasoning](https://github.com/Sohojoe/CLIP_visual-spatial-reasoning).)
**Example #2** - adding black & white embeddings
* Add the image Pups->Pup4 on Input tab 1
* Add Embeddings->Black&White on Input tab 2
* Set Input 2 embeddings power to 1.3
* Click the "Search Embedding Space" to see the results
* Note: You may need to play with the power with different source images
### Initial Features
- Combine up to 10 Images and/or text inputs to create an average embedding space.
- Search the laion 5b images via a kNN search
### Known limitations
- I'm getting formatting bugs when running on Huggingface (vs my Mac Book). This is impacting:
- The galary
- The Embeddings Tab
### Acknowledgements
- I heavily build on [clip-retrieval](https://rom1504.github.io/clip-retrieval/) and use their API. Please [cite](https://github.com/rom1504/clip-retrieval#citation) the authors if you use this work.
- [CLIP](https://openai.com/blog/clip/)
- [Stable Diffusion](https://github.com/CompVis/stable-diffusion)
""")
# ![Alt Text](file/pup1.jpg)
# <img src="file/pup1.jpg" width="100" height="100">
# ![Alt Text](file/pup1.jpg){height=100 width=100}
if __name__ == "__main__":
demo.launch(debug=True) |