File size: 30,577 Bytes
dcd6afb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80c0743
 
 
 
 
dcd6afb
 
80c0743
a14ceae
 
dcd6afb
a14ceae
efe8b2e
a14ceae
dcd6afb
 
 
80c0743
a14ceae
dcd6afb
a14ceae
efe8b2e
a14ceae
 
dcd6afb
 
80c0743
dcd6afb
 
 
 
 
 
 
80c0743
dcd6afb
a14ceae
 
dcd6afb
 
 
 
80c0743
dcd6afb
 
a14ceae
dcd6afb
 
 
80c0743
 
 
 
 
 
 
 
 
0e61e04
 
 
 
 
 
 
 
dcd6afb
 
 
 
 
80c0743
dcd6afb
 
74f54c9
 
 
dcd6afb
74f54c9
 
 
0e61e04
 
 
 
 
 
 
 
74f54c9
 
 
 
0e61e04
efe8b2e
 
74f54c9
 
0e61e04
 
7e9c7e5
 
 
 
0e61e04
74f54c9
 
dcd6afb
 
 
80c0743
dcd6afb
 
 
 
 
80c0743
 
dcd6afb
 
80c0743
 
dcd6afb
 
80c0743
dcd6afb
 
 
 
 
 
 
80c0743
dcd6afb
 
80c0743
dcd6afb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80c0743
dcd6afb
 
74f54c9
dcd6afb
a14ceae
efe8b2e
a14ceae
dcd6afb
 
 
 
80c0743
dcd6afb
 
80c0743
dcd6afb
 
80c0743
dcd6afb
 
80c0743
dcd6afb
 
80c0743
dcd6afb
 
 
 
 
80c0743
dcd6afb
 
 
 
 
 
 
 
 
 
80c0743
dcd6afb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80c0743
dcd6afb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76f0068
dcd6afb
 
 
 
 
1111fae
dcd6afb
 
1111fae
dcd6afb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1111fae
 
 
 
 
 
 
dcd6afb
1111fae
 
 
 
dcd6afb
 
 
 
 
 
 
 
 
 
 
 
 
 
1111fae
 
 
 
 
dcd6afb
1111fae
 
 
 
 
 
 
 
 
dcd6afb
1111fae
 
 
 
 
 
 
 
 
 
dcd6afb
 
223ae5a
dcd6afb
 
 
 
 
 
 
8498cb9
dcd6afb
8498cb9
dcd6afb
88f7e7b
 
 
 
 
 
 
dcd6afb
 
 
 
223ae5a
dcd6afb
223ae5a
dcd6afb
223ae5a
dcd6afb
 
 
 
1111fae
 
 
 
 
 
dcd6afb
 
 
 
 
 
 
 
 
 
 
 
80c0743
dcd6afb
 
 
 
 
 
 
80c0743
dcd6afb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74f54c9
8498cb9
 
dcd6afb
ff1dc52
 
dcd6afb
 
 
80c0743
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcd6afb
 
80c0743
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcd6afb
80c0743
dcd6afb
 
8498cb9
dcd6afb
 
 
 
 
 
88f7e7b
 
 
 
 
 
 
dcd6afb
 
 
 
0e61e04
dcd6afb
 
 
88f7e7b
 
 
dcd6afb
 
 
0e61e04
dcd6afb
 
 
 
 
 
 
 
 
 
 
 
80c0743
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
import gradio as gr
import torch
from PIL import Image
from torchvision import transforms
# from diffusers import StableDiffusionPipeline, StableDiffusionImageVariationPipeline, DiffusionPipeline
import numpy as np
import pandas as pd
import math
from transformers import CLIPTextModel, CLIPTokenizer
import os

from clip_retrieval.clip_client import ClipClient, Modality


# clip_model_id = "openai/clip-vit-large-patch14-336"
# clip_retrieval_indice_name, clip_model_id ="laion5B-L-14", "/laion/CLIP-ViT-L-14-laion2B-s32B-b82K"
clip_retrieval_service_url = "https://knn.laion.ai/knn-service"
# available models = ['RN50', 'RN101', 'RN50x4', 'RN50x16', 'RN50x64', 'ViT-B/32', 'ViT-B/16', 'ViT-L/14', 'ViT-L/14@336px']
# clip_model="ViT-B/32"
clip_model="ViT-L/14"
clip_model_id ="laion5B-L-14"



max_tabs = 10
input_images = [None for i in range(max_tabs)]
input_prompts = [None for i in range(max_tabs)]
embedding_plots = [None for i in range(max_tabs)]
embedding_powers = [1. for i in range(max_tabs)]
# global embedding_base64s
embedding_base64s = [None for i in range(max_tabs)]
# embedding_base64s = gr.State(value=[None for i in range(max_tabs)])

debug_print_on = False

def debug_print(*args, **kwargs):
    if debug_print_on:
        print(*args, **kwargs)

def image_to_embedding(input_im):
    # debug_print("image_to_embedding")
    input_im = Image.fromarray(input_im)
    prepro = preprocess(input_im).unsqueeze(0).to(device)
    with torch.no_grad():
        image_embeddings = model.encode_image(prepro)
    image_embeddings /= image_embeddings.norm(dim=-1, keepdim=True)
    image_embeddings_np = image_embeddings.cpu().to(torch.float32).detach().numpy()
    return image_embeddings_np

def prompt_to_embedding(prompt):
    # debug_print("prompt_to_embedding")
    text = tokenizer([prompt]).to(device)
    with torch.no_grad():
        prompt_embededdings = model.encode_text(text)
    prompt_embededdings /= prompt_embededdings.norm(dim=-1, keepdim=True)
    prompt_embededdings_np = prompt_embededdings.cpu().to(torch.float32).detach().numpy()    
    return prompt_embededdings_np

def embedding_to_image(embeddings):
    # debug_print("embedding_to_image")
    size = math.ceil(math.sqrt(embeddings.shape[0]))
    image_embeddings_square = np.pad(embeddings, (0, size**2 - embeddings.shape[0]), 'constant')
    image_embeddings_square.resize(size,size)
    embedding_image = Image.fromarray(image_embeddings_square, mode="L")
    return embedding_image

def embedding_to_base64(embeddings):
    # debug_print("embedding_to_base64")
    import base64
    # ensure float32
    embeddings = embeddings.astype(np.float32)
    embeddings_b64 = base64.urlsafe_b64encode(embeddings).decode()
    return embeddings_b64

def base64_to_embedding(embeddings_b64):
    # debug_print("base64_to_embedding")
    import base64
    embeddings = base64.urlsafe_b64decode(embeddings_b64)
    embeddings = np.frombuffer(embeddings, dtype=np.float32)
    # embeddings = torch.tensor(embeddings)
    return embeddings

def is_prompt_embeddings(prompt):
    if prompt is None or prompt == "":
        return False
    try:
        embedding = base64_to_embedding(prompt)
        return True
    except Exception as e:
        return False

def safe_url(url):
    import urllib.parse
    url = urllib.parse.quote(url, safe=':/')
    # if url has two .jpg filenames, take the first one
    if url.count('.jpg') > 0:
        url = url.split('.jpg')[0] + '.jpg'
    return url

def main(
    # input_im,
    embeddings,
    n_samples=4,
    ):
    debug_print("main")

    embeddings = base64_to_embedding(embeddings)
    # convert to python array
    embeddings = embeddings.tolist()
    results = clip_retrieval_client.query(embedding_input=embeddings)
    images = []
    for result in results:
        if len(images) >= n_samples:
            break
        url = safe_url(result["url"])
        similarty = float("{:.4f}".format(result["similarity"]))
        title = str(similarty) + ' ' + result["caption"]

        # we could just return the url and the control would take care of the rest
        # however, if the url returns an error, the page crashes.
        # images.append((url, title))
        # continue
        # dowload image
        import requests
        from io import BytesIO
        try:
            response = requests.get(url)
            if not response.ok:
                continue
            bytes = BytesIO(response.content)
            image = Image.open(bytes)
            if image.mode != 'RGB':
                image = image.convert('RGB')
            # width = 336
            # aspect_ratio = float(image.height) / float(image.width)
            # height = int(width * aspect_ratio)
            # image = image.resize((width, height), Image.Resampling.LANCZOS)
            images.append((image, title))
        except Exception as e:
            print(e)
    return images

def on_image_load_update_embeddings(image_data):
    debug_print("on_image_load_update_embeddings")
    # image to embeddings
    if image_data is None:
        # embeddings = prompt_to_embedding('')
        # embeddings_b64 = embedding_to_base64(embeddings)
        # return gr.Text.update(embeddings_b64)
        # return gr.Text.update('')
        return ''
    embeddings = image_to_embedding(image_data)
    embeddings_b64 = embedding_to_base64(embeddings)
    # return gr.Text.update(embeddings_b64)
    return embeddings_b64

def on_prompt_change_update_embeddings(prompt):
    debug_print("on_prompt_change_update_embeddings")
    # prompt to embeddings
    if prompt is None or prompt == "":
        embeddings = prompt_to_embedding('')
        embeddings_b64 = embedding_to_base64(embeddings)
        return gr.Text.update(embedding_to_base64(embeddings))
    embeddings = prompt_to_embedding(prompt)
    embeddings_b64 = embedding_to_base64(embeddings)
    return embeddings_b64

def update_average_embeddings(embedding_base64s_state, embedding_powers):
    debug_print("update_average_embeddings")
    final_embedding = None
    num_embeddings = 0
    for i, embedding_base64 in enumerate(embedding_base64s_state):
        if embedding_base64 is None or embedding_base64 == "":
            continue
        embedding = base64_to_embedding(embedding_base64)
        embedding = embedding * embedding_powers[i]
        if final_embedding is None:
            final_embedding = embedding
        else:
            final_embedding = final_embedding + embedding
        num_embeddings += 1
    if final_embedding is None:
        # embeddings = prompt_to_embedding('')
        # embeddings_b64 = embedding_to_base64(embeddings)
        # return gr.Text.update(embeddings_b64)
        return ''

    # TODO toggle this to support average or sum
    # final_embedding = final_embedding / num_embeddings
    
    # normalize embeddings in numpy
    final_embedding /= np.linalg.norm(final_embedding)
    
    embeddings_b64 = embedding_to_base64(final_embedding)
    return embeddings_b64

def on_power_change_update_average_embeddings(embedding_base64s_state, embedding_power_state, power, idx):
    debug_print("on_power_change_update_average_embeddings")
    embedding_power_state[idx] = power
    embeddings_b64 = update_average_embeddings(embedding_base64s_state, embedding_power_state)
    return embeddings_b64

def on_embeddings_changed_update_average_embeddings(embedding_base64s_state, embedding_power_state, embedding_base64, idx):
    debug_print("on_embeddings_changed_update_average_embeddings")
    embedding_base64s_state[idx] = embedding_base64 if embedding_base64 != '' else None
    embeddings_b64 = update_average_embeddings(embedding_base64s_state, embedding_power_state)
    return embeddings_b64

def on_embeddings_changed_update_plot(embeddings_b64):
    debug_print("on_embeddings_changed_update_plot")
    # plot new embeddings
    if embeddings_b64 is None or embeddings_b64 == "":
        data = pd.DataFrame({
            'embedding': [],
            'index': []})        
        update = gr.LinePlot.update(data,
            x="index",
            y="embedding",
            # color="country",
            title="Embeddings",
            # stroke_dash="cluster",
            # x_lim=[1950, 2010],
            tooltip=['index', 'embedding'],
            # stroke_dash_legend_title="Country Cluster",
            # height=300,
            width=0)
        return update
        
    embeddings = base64_to_embedding(embeddings_b64)
    data = pd.DataFrame({
            'embedding': embeddings,
            'index': [n for n in range(len(embeddings))]})
    return gr.LinePlot.update(data,
            x="index",
            y="embedding",
            # color="country",
            title="Embeddings",
            # stroke_dash="cluster",
            # x_lim=[1950, 2010],
            tooltip=['index', 'embedding'],
            # stroke_dash_legend_title="Country Cluster",
            # height=300,
            width=embeddings.shape[0])

def on_example_image_click_set_image(input_image, image_url):
    debug_print("on_example_image_click_set_image")
    input_image.value = image_url

# device = torch.device("mps" if torch.backends.mps.is_available() else "cuda:0" if torch.cuda.is_available() else "cpu")
device = "cuda:0" if torch.cuda.is_available() else "cpu"

from clip_retrieval.load_clip import load_clip, get_tokenizer 
# model, preprocess = load_clip(clip_model, use_jit=True, device=device)
model, preprocess = load_clip(clip_model, use_jit=True, device=device)
tokenizer = get_tokenizer(clip_model)

clip_retrieval_client = ClipClient(
    url=clip_retrieval_service_url, 
    indice_name=clip_model_id,
    use_safety_model = False,
    use_violence_detector = False,
    # modality = Modality.TEXT,
    )
# results = clip_retrieval_client.query(text="an image of a cat")
# results[0]

examples = [
    # ["SohoJoeEth.jpeg", "Ray-Liotta-Goodfellas.jpg", "SohoJoeEth + Ray.jpeg"],
    # ["SohoJoeEth.jpeg", "Donkey.jpg", "SohoJoeEth + Donkey.jpeg"],
    # ["SohoJoeEth.jpeg", "Snoop Dogg.jpg", "SohoJoeEth + Snoop Dogg.jpeg"],
    ["pup1.jpg", "", "Pup no teacup.jpg"],
]
# image_folder = os.path.join("file", "images")
image_folder ="images"

# image_examples = {
#         "452650": "452650.jpeg",
#         "Prompt 1": "a college dorm with a desk and bunk beds",
#         "371739": "371739.jpeg",
#         "Prompt 2": "a large banana is placed before a stuffed monkey.",
#         "557922": "557922.jpeg",
#         "Prompt 3": "a person sitting on a bench using a cell phone",

# }

tabbed_examples = {
    "Pups": {
        "Pup1": "pup1.jpg",
        "Prompt": "Teacup Yorkies",
        "Pup2": "pup2.jpg",
        "Pup3": "pup3.jpg",
        "Pup4": "pup4.jpeg",
        "Pup5": "pup5.jpg",
    },
    "Embeddings": {
        "Black & White": "F0kxPHAqE7t3DoY79djWOwA6Cb2hjK88EkuIvXdEgTzS2yY93WXvOsKffL08qjU9oGVJvZtXD7wiQ-u7QTLhvGRqozpSFqo8fCMaOy42NDyyXCC9ls69Olk_A7zJ6Ik97AwLOyNjCryYr4W8kREmPfIOPb0xrde7137Fu3Jr5bwGKGU90T-lvI1pMT1ftz-9qy3vPMTnRDzx97C8fRWjPGbQU71d6f26ASZyPdg3Qrx-saS9FaAbu83DK732Ry-9WQ7HPPPiwTzY4gS97gc1PGXmRrzsZUS9kQwmPKDZvzw4F4a9zElPPQjmdj2Lqak9SHFXPJmPvDwRLPU7YvqHPV7OYDx7K-q8wfdIveWEXT1kYE289sfOOwH6YbuID129kMivu1uvCb35jGi9shisPNsXz7zb0xk99u_ivE68QL2ibjo8jCAmvPIz5Lyv9kU8rUIKPbCciD23RQG9P48tPfEpsLwbZkE8wtjHvHqvB72k_Au818IRO2pLHz2U2yq9M1_hvTG2FD05si275m4rvL85ojtDSCo9xWclvTOEgLrMt449xggSvFQzT72wtOw7mtgLvRe-N732MlW8bGIWvMi_m7p1XSA91Sq2PHDDxrxcMC29RPoJPVeIzTyCC448PVequz8rLz2Rsnk6yayDvVjAJjuJxqe9ivRpvVEKjTwwxoM9OKOtPUjlhT20uYO8ynh2PYLVZjwREFS8wWWIPLZGrz2oNxy7GR4gvaENaDzBxJu8ZdYGtw7B7rxG2sC7mP0QPYkKXbzbh4E7HrsqvJ64P73AL_Y8I6L-vB59jjyVE8O7jshZOw19JLwQD1A9NG3xu00JHr08iBC9WANYvBe-N73tpoS6dOZaPT1Btzy9kcI8MzNRvNH7hDuMnwK8o88MvZWU5rwDUhk9sBEPPGi_DL0BY8u8-cKPvGqIjbw90_c8y19CvVYT8bxLLxU920igvX_DgTyAzh-8q2lZOy-UmbxXnlU8or9cPJruuj3HJHy9a5-ZPUJ717w9frq88QG2vIwxQz2dIam8ET5Uu2ftYzsxRxI9nDwcPDQz5jxtrf079M5rPAVIrryU_U87fslzPSTkQrxpCK08VY1NvdsXTzuwsz48rvvavIsTY705S2G936llvTsk0bwQhEG6zoYovD0TXjoseXq9bt45PfQJqDzYp_I8z3WLvGTflLwWLui78YjDvAx4Trw2-yO9oXunvADWCj1wlQQ8NmF-PG1uszzCusW8jujMO3W637yShqy7O4loPHI4ybw4yr271thYPB9hAj0PwUQ8L0fRPLkzlD091oY88PvBOjv4wDyBMh69eUsePfOb6DyI4Zq8TxH-u0uCi702EZc8kqoQvQQkAbwz9AY841FFvebosTs2z708FpwnPUqOPb0zlQi9KNeWvBbeALwy70U91KD_PHPxSTwi8wO8aroMPYpCdb1QLDI9VgwAvL-JKz1I1Za8EshhO-EUbD2cpQW9UEeQvA8vBD0KvYq6ZJ6DvWZsVb1UdT07gHVPPUM-VLxbYZM8SoXXPFP6iDwC-AU9_5p4vIuPKD0d7x26nrBSvWaCxjn2aCY9iaLDvD8yYbzQPzo9BihlPaxUar2IeMa7zJniOsRbiD0zigS9P-TqvJMO7bsuR3u8KS_WvEL1XT3vWoG7OmGqvBsJdb3_vlE5js_2vP-wF70sbJq8XqWJPOOOM71wkJk9WJRqvA7XNzqVV-O8OjBuPW5_O71u-QK92baeOovezDw-NPS8G-dkvRx_UD1xzYe94dxoPM0_-TzqrSE8DUWhPLz6qzwr4TW9yOPIO5FmYzyM_oC9fj8gvWtdljuotQg8lwlDPPPRubw4Bxc8f6y5u_x2trxXH2Q81m2TPadef7yfNwc9AlIuvKNWXr2A2c28s6e1uspCsrzBHtk66N90PeUS-TqID109vydpu8vDVb1ZknC97JqRu18mLT1hIZg8CNmBt43v1DsezNw73krSPH_eo7yAPlA99-k0PNBamLw16jA90kSlu-pTIz0DPLs8sdQLvMP3Mz3_zCS6UOMmvX4mFr3OhtK7tjA8PT6wJL2DTy69bE17vCFNVr1LJVS8zIuouVlRzjy34jA9CV-QPD5j3DwrYu68CD4uvZAP57zhOQs8krApvOvEV707mAC7giNdPYjSbjxfdLg8gZacu3ritLz6NPI7KDTBvEEhxDzihwE8pX0vPWS4GTtZfk28YPBwPQMaFr3Jqxs8t5bsuw3moj0q2q07AuRuPDSLnbw1-zi961XVuq_qKL1ofAW8CwGBvVScoz3uDny9px98PA35cTxwaYk6jwUJPQUyZbx2mVM9SMqnPdPMejxuREA9dK0UPe4VCLrn6vg8LBTOO8c2v7yL1wW9PUWJPIqrybzN3h67_-sSvVaMHz2DKno8uDCSPN3ZiL2B5JK9-CsOPNdBrbzEIPY7gCjdvEAJCjv3LX-8NjupvTIxijw55-I7CgjIvOx1Hj33TUg81is6vLs8Gj1K7VA8nyetPXnXAbgJ1US92c7tPNAYP7zzeVi9eaVGvaT8izv9_pi92S3sPCywZD3ihPK8pJ2NPZe0BT3EYSG9ahv8uic4k7wNc-M8bX9QvTUsirzUYaC8LCVrPS5Y7jyqsnk4UYbaPLF8P70_x7C80qB_u5jBjDzQqCO9vqn8vCUcMb3Z6TY9ZLRcPYLJHz3ZPJg7OMW9O23YBr3YeZu89uKCPTdrqjuwB-O8ZL82vJ7ClbvHOq-76d4xvITNT7z2x6Q8NQAkvatTUb2PhlY8NCe0OzOLR71EliA8-W6APBeomjstTFG99YfouysDNT2R3b28y7K4vLt2-bvKf6C9bf6XvH8EBrzZMak8BNpuPLLJhz1G6gU9UouwPE-QRT1lKKA8bjaGO9JQGDwpjtQ7yi_BvLv_ATyE1Ju99_8nPRh1gr1Vyyk6Q_WzPc60fz2-XoC9nsTxvJfFDT2zS9m8kx-2u3mlxjyfqf68Tje9PcK_G7v_F467sdXOvIzZdr3LONw8ngu2vF8Rgr35KP87TzCEvQNZS7xGrkU976MhPTOLsr2woYg7OGAmvRPIzLxLtaM7ofWDPXREq7wSwsi7T7dVPEiO5zwaOtu8OudNvHa5nLxYLpC9h445OydP3rsAwMG7rV9ZvWnBfb0Gwoo8ZwPXvPa72ztudDc9l4gfPJTxsjxCioM90JIwPaFs5rxs46q8yGKQux4injyRLZ281PZivejwfLwwZGE8NTinvDfsdzwSkMk8hMtmPSTkrbyigau8L4kVvJntIrrwqTo8dNSPvctfQruCT0M8lm1Wu6mpPD2Mmpc971YEOY4sGT2Be1M9rewmPfCeS7yGn9Y8KXYaPVbF0DvtdQm9r2bhvPwGGz1jNOe8KQ0xPbEPOz38nIO8PEQaPKFsZj30PNW9Be4FvRVfzj2HUvq7aJiRPB-lNz1GIze87PZrPKefPz3g_ni8VfOPvYRFbb1j-7W8_Z0xvVLvrrz8kZQ9_2dLPbAC4zxthKa8fzwJvff_p7waPzG9FV_jvLKlDr3ED249QDy3PD1SabxxX0i9M0hAvVL1Rz0cGCG9coYuvY--bj1sKhO9d_jmPHowQL0Bm_g863DIPUM-VD0OVhQ8I5H2PLwD_rxb5zY7MJqdOy6wOrxhIS09yOU7PT74ljwRi_M9WYDLvAtKIb01Yf68WfwQPf2YsTv0-vu8bp_qPHKDrL1z1KS8Xf_bPDCQXD1oIZE9lGFjuzaN5LzWIXk8nJsvPSgdtTyqEEq9286EOyZm6rtF8DM95ugxugOlDz115YI86aumO388CT1SPRC8MtM5vB6liDwqxT06Q5agvJ-TAz0CikY9MxbBvP2_QTwxhsc8NLeDOzql9LxJxmq8MSWCPfVtkTzuo3W78-gSvenIvrxOofe8zr5APQBnCL3z4us7cKEhvQ4lWL0FTwK9cMMcPHpNZT3G1hK9XOKhvZF2nz1mRdq8dgeou_fTQTz43968VndaPNdZ_DsoxLo8n0gPvTcp0Tq17Js85EnDPWiyZ733Fsk8AFwuPGuUv7sYHcs8GGtBvZK7dju76bi9KHsavWsqEzwk0xA8",
        "Fire": "VsgiPPjckjuCP-q8fs25PC1DT7z-1li7_bAkvPkCrDx4W9E7V9sYvf3_D72Oyau8vXGFPVCSFD00qhO9-mSEPGQ8kT1_pN67qvXxvDwZDb1nLnO8TbvSO8Gn0j3OdUc9dNaqPP2wJL170AQ9CX-0PJu1jTycyBW9JAVvvAtWPjyF1pe8o4awO12vBrvkJ0O8EtsBPUszvbzduJO8zghmPeIBezyBaKE8STaIPBUnkDq7D1q8swJCPUR1kLy9qmU7itcaPZ2flr2fOlg7gcpKvQh__DzNAEM8xqSJPVNTb7s7aMA7cJ3sPK8ujDx4W1G8-RVhvcra-jxRuD-9RTkAPdr0dDx9a7Q7Y1q9ux2WLT0QBJO8DWkHPUE8pby9Ioi8kFydPJX0Xbzwpme8YeVuvL0iiD0q2Ti9oE1OPGXPlL0qswS805g7vWb1pD1ivPi8oOskvAm7BT323P685LIju0N1WL0WYLq80sEWPShRx7zTSVC83qLkvF-_1bwZ1RG9833EvIRlVr0jo2m8xxmpvGXirjyLTDo9hRa-PKAnGj2tVwK9aGogvay5xjxvZB69MoSnPHSHmzxcc1k79hhQvfIufbyH7Zo9E2NNvRq_0Dz0o_i8Tx2iPJb0lTypgPY8g90cPV7VljuyyZc7gXvfPLjW97x5W6097CGdvJhT9Lk7yum8AJsbPP90izw3uj49qUeEvQE277xqQaE70UybPIw2-Tq1O2y8yD9dPD0_wbxZY6485v7DvN3LP7vsg8Y8OZE_PehzGzwNj1-86kouPW2Ni70FM9w7wDIzvHUibzwqO_Q7c4djvc2eh73TIwq9icSkvA7x0rzb9Ky9Lpp4vaSs0rwUdkM6WLK9PFhQOL2vZ348TUYPveAqVrw3HOi87JbyPPGmXj06foG6E1CPPMgD-rx7gT29kgpMPau5fLxaTe271DaSvUjUpr0v6a28hLRBvS-tbjznpHy8rbm0uic-UTwCwZm8UOEavCZnmrz9Ek69cU65vcUGabznc0g8oZwDPWVX8ry3YVi9MPwRPZqilzu_H-E8m7WNOs-INLy-5pI85ZzivLewQ7wlVLY9WnaAPOMBMz1j-JM8MF47Pfe2gjuxjWq5LWEqPRohejwumni84ow3vBoOvLzHyqu8Z7mvvB1t9jzE83I83LglvQRv4zxAx448KRUuvI3UGT0Ojxe9IJM-O-fCzjwKVv29DMtUPX6R6LwDIwQ9gwNRPaOG1LzCSsA8f20AvbUoLj1SyzU9o3MNPJd8cz0mBQO8A0kvPVhQFDx-axC9Ts7IPEtkxDyxjeq6O7fPPI1Jbz3VDS49UQcrOsPg_LwpUSM8VwFxve7P5rwOQCw61uTbu1WMdbxV22A8IM-PPKsxHz1U8SG9cmGvvD1Kgjx3cRI9WMVXvPigwbxR9JA9zoj8vJJGlDzWlXC9N7q-vFGlAT0Ywps6XoYrvD946zy3_668ZZNnu4OhSz3WqHi9dl4cuE1ZKb3fj4I82s4KvILKJr3hjFu8w35TPZDker20d2E9DS22PRBmmLxmaug8D_EKPRUnEDsbcB2911n7u0PEwzyl-yu9lWl9vFFWljzP_Xc7i5slvU5_yzzJtGo80RBKvcKUFLxQkgs8jXImvDUyRLxjWr07RxCcPfPfybw_eGu8HZaJu9VvPDzCIwK8XjecPC9LRT56bkc9tWSRvFD0Rr2QgtE77x7SvPbUkzyikR48vVv6PPSQujuS96i9G10Du50wKj0UdsO5NIFcvGxnjbtLRnu9ZvVIvDI1vLyDjo28URppPCegVj1oLk-9u5oEPWzcrLspApQ9W4mavJEzHrufOti7RHWQPF9warw1vZI8vaplugiojzxjHuw8LSXrPH0v9bwwmoM9Dt6CPPIufTwHu_G8XK8qve6psrrvHtI60l8Rvdwt6byZj7M8VVMDPI3nxboqd7M84gFXu4-rI71DE688wEXxPIxfsLycKq07rWrJvAowJb1mG_28M-YRvYUWtTxq1Da95v7DvJHRKj0VJxC7QU_sPEdyxbyw8hY9xUIWPaYhPDtVtay7faepvBg3Tb1Ai2E8Kuz2vNOrebygnF09X13QvEN1xjy4dM67XE0cvE67Lr0yhCe9rbmiPZvuf7yT2YW8_E5DvR8TXr1QVt46iLGuPJqXTb3Z7DY9LunjPNkw2Lw3uj499ZCEPbLJl7vefAw9TWznvJ8nPr0OLZI8Ff7Yva0IoLsEmIg9x__juwaoe7vmmgY97vgdPUIAuTwOQCw79-_0O_K5ubxN96M8GkqNPY2YbL0bcJ08y3gtPK0IoDucAfY8uLAfPbDceb0c0iK9ysdgOQgKFbtkCwq-NqfIvGD7Aj3cuEk8z8QFO7CjKzwNyzA9aslsPdRv8ryQq4i8e7LEPLaKD7v7KI-9fJSzPO6WmLy27Dg8TNGTvOSyIz0arLa9zRNdPW7G_TxUUzm958JOPbrWCz3L2kS9tU50PZ3ut7yenwS9rQggvH_1-LxCTxK8OeAqPSvsUr3Ijja9Tn9LPYixrjuD3Qq9HzyVPGgbNbzyV7S8UQerOj5l9bymITw8H4BIu3g1Hb3KePU8F9VQvZvIp7yN50W8poNlvB5alL3M7cy8IUSLO0HaH70NLba8PI70vGq2QLwRjMy8YF0aPZmPIbzVvqe9MHF5PcjdobuWuM08rQggvaMRiL1Tokg97-JcvMgsjb0-8A09bNysPbrpJTxQQyC9e-NUvF8OZTz_Xve85CdDPEXB-DyPb9s8XdVePVRAjbx3SFu8lM4pvHTWhjwgk746a2dDvF2vBjw00Gs9akEhPE3kCT2PmJK8D2bgPIS0Qb2xRY-8-jdbPQuloLvyzFO9uRKKPHaEdD12Xhy8Je0Uve-TcT1lMRo9PlI3PafSCLhy1nK8qLzrPA0E_zzkJ0M8eUiTPf1hubxkqYS9IhvUPPeNyzz7O006wmvdOxX-2L0EDcy8zcRxvTp-gT0f4nE7u3HfPB3lBj2Pq6w8FHZDvZlANj0OQKw7z3WavIVlMj1B2qi7jP0GvMBF8btDOWM8w-B8PX4cpb2tkP08YqnwPHLW8jzPJgs9-mSEvbf_rrzN7QS845-tvP3_j72M_Ya7ZkQ0vczajryGKTS9RMSNvS-Hnz3aQ_I8IIAkPbV3vTx8Mgq9z4i0vP_pTr1UZmU8lDDTOwl_ND1zdKU8G3AdPUlJIr0aIfo77x7Su1Zmi7wmK7e90oVFvSMuSj0WwuO85WvJPKa_ErwarD88mFN0OkJPpLrB0Am8hviavMhl_7xIIxK98sxTPKZwJzz8YW89lGwAvFIaIbx2QLi8sY3qvMTzcj37O006BPoxvVrFjzwPU6K81tFBPGzcrLqmg-W87ZY8vObYj7wEvjy9cZ0ku48Nsjtmpl09Z71gvcOnCrzPxAW9e24RPWUeAL3WIAm9YHDYPCTflrrcuEk8Q2KaPS-tyrze3hG936JAvGhqoDy_gWa9v1uyOw6PFz2QglG86DfuPEX9yTzazhw9sFSuPCEI3ru4_wq9QrHNPDwZDTz5UTK9DS02vYLw2jy_qh09v1syPNP6Ur0HMwu9HVpcvVgU57wdNJY8uvy_PO6AezxBPK68vHG7vEHahLvnr7S9DAcCvdWCerz9Es67lB25vO-T8bsUFJq84oyTvV8O5TsCIzG7gcrKPH5rkLvQrsQ8KaCOvCXJ1bsmBQO9XP4nPesle71QMJi8qm0Uu8YZTb3nwjw9C2lzvOSyI7xXPcI8sHp0PZZDk7xvUQS9-cZRPZCC0TvoERY9mrVVPOvS-Twez_u72jA0vSo74rwOQCy7nrIMvYcA4juuzKq8C0MJPXRLbj2yjU88FMUuvSv_bD3_1pC9yfAXva_yOj2tCKC769JePRF5DjzIixi9gBl-Pe-8KD0G5Ci9Cc7DPKxEJz1grJc9La4KvaERWb1nppU7rd_oPDdFn7yatag8HSnDvIxfDD0VTcQ83_EHPeBmJ709LCe99qOMvApDP72cAfa8YCHbPGpBITpXsuG8qfiGvKNzBD2QXAI9o5luvXGKijzaQ_K8R5h5PVJpjLug_mI9ZVfyPC_WAT0AI3m9",
    },       
    "Portraits": {
        "Snoop": "Snoop Dogg.jpg",
        "Snoop Prompt": "Snoop Dogg",
        "Ray": "Ray-Liotta-Goodfellas.jpg",
        "Ray Prompt": "Ray Liotta, Goodfellas",
        "Anya": "Anya Taylor-Joy 003.jpg",
        "Anya Prompt": "Anya Taylor-Joy, The Queen's Gambit",
        "Billie": "billie eilish 004.jpeg",
        "Billie Prompt": "Billie Eilish, blonde hair",
        "Lizzo": "Lizzo 001.jpeg",
        "Lizzo Prompt": "Lizzo,",
        "Donkey": "Donkey.jpg",
        "Donkey Prompt": "Donkey, from Shrek",
    },
    "Transforms": {
        "ColorWheel001": "ColorWheel001.jpg",
        "ColorWheel001 BW": "ColorWheel001 BW.jpg",
        "ColorWheel002": "ColorWheel002.jpg",
        "ColorWheel002 BW": "ColorWheel002 BW.jpg",
    },
    "CoCo": {
        "452650": "452650.jpeg",
        "Prompt 1": "a college dorm with a desk and bunk beds",
        "371739": "371739.jpeg",
        "Prompt 2": "a large banana is placed before a stuffed monkey.",
        "557922": "557922.jpeg",
        "Prompt 3": "a person sitting on a bench using a cell phone",
        "540554": "540554.jpeg",
        "Prompt 4": "two trains are coming down the tracks, a steam engine and a modern train.",
    },
    # "NFT's": {
    #     "SohoJoe": "SohoJoeEth.jpeg",
    #     "SohoJoe Prompt": "SohoJoe.Eth",
    #     "Mirai": "Mirai.jpg",
    #     "Mirai Prompt": "Mirai from White Rabbit, @shibuyaxyz",
    #     "OnChainMonkey": "OnChainMonkey-2278.jpg",
    #     "OCM Prompt": "On Chain Monkey",
    #     "Wassie": "Wassie 4498.jpeg",
    #     "Wassie Prompt": "Wassie by Wassies",
    # },
}

tile_size = 110
image_examples_tile_size = 50

with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column(scale=5):
            gr.Markdown(
"""
# Soho-Clip Embeddings Explorer

A tool for exploring CLIP embedding space.

**Example #1** - removing the Teacup from the image

* Add the image Pups->Pup1 on Input tab 1
* Add the text prompt "Teacup." on Input tab 2
* Make the Input 2 embeddings negative by setting the power to -1
* Click the "Search Embedding Space" to see the results

""")
        with gr.Column(scale=2, min_width=(tile_size+20)*3):
            with gr.Row():
                with gr.Column(scale=1, min_width=tile_size):
                    gr.Markdown("#### Pup in cup:")
                with gr.Column(scale=1, min_width=tile_size):
                    gr.Markdown("#### - 'Teacup'")
                with gr.Column(scale=1, min_width=tile_size):
                    gr.Markdown("#### = Pup")
            for example in examples:
                with gr.Row():
                    for example in example:
                        with gr.Column(scale=1, min_width=tile_size):
                            if len(example):
                                local_path = os.path.join(image_folder, example)
                                gr.Image(
                                    value = local_path, shape=(tile_size,tile_size), 
                                    show_label=False, interactive=False) \
                                    .style(height=tile_size, width=tile_size)

    with gr.Row():
        for i in range(max_tabs):
            with gr.Tab(f"Input {i+1}"):
                with gr.Row():
                    with gr.Column(scale=1, min_width=240):
                        input_images[i] = gr.Image(label="Image Prompt", show_label=True)
                    with gr.Column(scale=3, min_width=600):
                        embedding_plots[i] = gr.LinePlot(show_label=False).style(container=False)
                        # input_image.change(on_image_load, inputs= [input_image, plot])
                with gr.Row():
                    with gr.Column(scale=2, min_width=240):
                        input_prompts[i] = gr.Textbox(label="Text Prompt", show_label=True, max_lines=4)
                    with gr.Column(scale=3, min_width=600):
                        with gr.Row():
                            # with gr.Slider(min=-5, max=5, value=1, label="Power", show_label=True):
                            #     embedding_powers[i] = gr.Slider.value
                            embedding_powers[i] = gr.Slider(minimum=-3, maximum=3, value=1, label="Power", show_label=True, interactive=True)
                        with gr.Row():
                            with gr.Accordion(f"Embeddings (base64)", open=False):
                                embedding_base64s[i] = gr.Textbox(show_label=False, live=True)
                for idx, (tab_title, examples) in enumerate(tabbed_examples.items()):
                    with gr.Tab(tab_title):
                        with gr.Row():
                            for idx, (title, example) in enumerate(examples.items()):
                                if example.endswith(".jpg") or example.endswith(".jpeg"):
                                    # add image example
                                    local_path = os.path.join(image_folder, example)
                                    with gr.Column(scale=1, min_width=image_examples_tile_size):
                                        gr.Examples(
                                            examples=[local_path],
                                            inputs=input_images[i],
                                            label=title,
                                        )
                                else:
                                    # add text example
                                    with gr.Column(scale=1, min_width=image_examples_tile_size*2):
                                        gr.Examples(
                                            examples=[example],
                                            inputs=input_prompts[i],
                                            label=title,
                                        )

    with gr.Row():
        average_embedding_plot = gr.LinePlot(show_label=True, label="Average Embeddings (base64)").style(container=False)
    with gr.Row():
        with gr.Accordion(f"Avergage embeddings in base 64", open=False):
            average_embedding_base64 = gr.Textbox(show_label=False)
    with gr.Row():
        with gr.Column(scale=1, min_width=200):
            n_samples = gr.Slider(1, 16, value=4, step=1, label="Number images")
        with gr.Column(scale=3, min_width=200):
            submit = gr.Button("Search embedding space")
    with gr.Row():
        output = gr.Gallery(label="Closest images in Laion 5b using kNN", show_label=True)\
            .style(grid=[4,4], height="auto")

    embedding_base64s_state = gr.State(value=[None for i in range(max_tabs)])
    embedding_power_state = gr.State(value=[1. for i in range(max_tabs)])

    def on_image_load(input_image, idx_state, embedding_base64s_state, embedding_power_state):
        debug_print("on_image_load")
        embeddings_b64 = on_image_load_update_embeddings(input_image)
        new_plot = on_embeddings_changed_update_plot(embeddings_b64)
        average_embeddings_b64 = on_embeddings_changed_update_average_embeddings(embedding_base64s_state, embedding_power_state, embeddings_b64, idx_state)
        new_average_plot = on_embeddings_changed_update_plot(average_embeddings_b64)
        return embeddings_b64, new_plot, average_embeddings_b64, new_average_plot

    def on_prompt_change(prompt, idx_state, embedding_base64s_state, embedding_power_state):
        debug_print("on_prompt_change")
        if is_prompt_embeddings(prompt):
            embeddings_b64 = prompt
        else:
            embeddings_b64 = on_prompt_change_update_embeddings(prompt)
        new_plot = on_embeddings_changed_update_plot(embeddings_b64)
        average_embeddings_b64 = on_embeddings_changed_update_average_embeddings(embedding_base64s_state, embedding_power_state, embeddings_b64, idx_state)
        new_average_plot = on_embeddings_changed_update_plot(average_embeddings_b64)
        return embeddings_b64, new_plot, average_embeddings_b64, new_average_plot

    def on_power_change(power, idx_state, embedding_base64s_state, embedding_power_state):
        debug_print("on_power_change")
        average_embeddings_b64 = on_power_change_update_average_embeddings(embedding_base64s_state, embedding_power_state, power, idx_state)
        new_average_plot = on_embeddings_changed_update_plot(average_embeddings_b64)
        return average_embeddings_b64, new_average_plot

    for i in range(max_tabs):
        idx_state = gr.State(value=i)
        input_images[i].change(on_image_load, 
            [input_images[i], idx_state, embedding_base64s_state, embedding_power_state],
            [embedding_base64s[i], embedding_plots[i], average_embedding_base64, average_embedding_plot])
        input_prompts[i].change(on_prompt_change,
            [input_prompts[i], idx_state, embedding_base64s_state, embedding_power_state],
            [embedding_base64s[i], embedding_plots[i], average_embedding_base64, average_embedding_plot])
        embedding_powers[i].change(on_power_change,
            [embedding_powers[i], idx_state, embedding_base64s_state, embedding_power_state],
            [average_embedding_base64, average_embedding_plot])


        # input_images[i].change(on_image_load_update_embeddings, input_images[i], embedding_base64s[i])
        # input_prompts[i].change(on_prompt_change_update_embeddings, input_prompts[i], embedding_base64s[i])
        # embedding_base64s[i].change(on_embeddings_changed_update_plot, embedding_base64s[i], embedding_plots[i])
        # embedding_base64s[i].change(on_embeddings_changed_update_average_embeddings, [embedding_base64s_state, embedding_power_state, embedding_base64s[i], idx_state], average_embedding_base64)
        # embedding_powers[i].change(on_power_change_update_average_embeddings, [embedding_base64s_state, embedding_power_state, embedding_powers[i], idx_state], average_embedding_base64)

    # average_embedding_base64.change(on_embeddings_changed_update_plot, average_embedding_base64, average_embedding_plot)

    # submit.click(main, inputs= [embedding_base64s[0], scale, n_samples, steps, seed], outputs=output)
    submit.click(main, inputs= [average_embedding_base64, n_samples], outputs=output)

    with gr.Row():
        gr.Markdown(
"""
My interest is to use CLIP for image/video understanding (see [CLIP_visual-spatial-reasoning](https://github.com/Sohojoe/CLIP_visual-spatial-reasoning).)

**Example #2** - adding black & white embeddings 

* Add the image Pups->Pup4 on Input tab 1
* Add Embeddings->Black&White on Input tab 2
* Set Input 2 embeddings power to 1.3
* Click the "Search Embedding Space" to see the results
* Note: You may need to play with the power with different source images

### Initial Features

- Combine up to 10 Images and/or text inputs to create an average embedding space.
- Search the laion 5b images via a kNN search

### Known limitations

- I'm getting formatting bugs when running on Huggingface (vs my Mac Book). This is impacting:
  - The galary
  - The Embeddings Tab

### Acknowledgements

- I heavily build on [clip-retrieval](https://rom1504.github.io/clip-retrieval/) and use their API. Please [cite](https://github.com/rom1504/clip-retrieval#citation) the authors if you use this work.
- [CLIP](https://openai.com/blog/clip/)
- [Stable Diffusion](https://github.com/CompVis/stable-diffusion)

""")

# ![Alt Text](file/pup1.jpg)

# <img src="file/pup1.jpg" width="100" height="100">

# ![Alt Text](file/pup1.jpg){height=100 width=100}    

if __name__ == "__main__":
    demo.launch(debug=True)