Spaces:
Runtime error
Runtime error
File size: 9,810 Bytes
ce2be79 804b339 0ebeec1 ce2be79 5a07ec5 0ebeec1 ce2be79 0ebeec1 12a66ee 0ebeec1 ce2be79 0ebeec1 ce2be79 0ebeec1 ce2be79 0ebeec1 ce2be79 0ebeec1 ce2be79 0ebeec1 ce2be79 7f78bf1 0ebeec1 804b339 0ebeec1 5a07ec5 0ebeec1 5a07ec5 7f78bf1 12a66ee 7f78bf1 12a66ee 7f78bf1 804b339 ce2be79 12a66ee 0ebeec1 ce2be79 7f78bf1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
from langchain.docstore.document import Document
from langchain.vectorstores import FAISS
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.memory.simple import SimpleMemory
from langchain.chains import ConversationChain, LLMChain, SequentialChain
from langchain.memory import ConversationBufferMemory
from langchain.prompts import ChatPromptTemplate, PromptTemplate
from langchain.document_loaders import UnstructuredFileLoader
from langchain.chat_models import ChatOpenAI
from langchain.llms import OpenAI
from langchain.memory import ConversationSummaryMemory
from langchain.callbacks import PromptLayerCallbackHandler
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
AIMessagePromptTemplate,
HumanMessagePromptTemplate,
)
from langchain.schema import AIMessage, HumanMessage, SystemMessage
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.callbacks.base import BaseCallbackHandler
import gradio as gr
from threading import Thread
from queue import Queue, Empty
from threading import Thread
from collections.abc import Generator
from langchain.llms import OpenAI
from langchain.callbacks.base import BaseCallbackHandler
import itertools
import time
import os
import getpass
import json
import sys
from typing import Any, Dict, List, Union
import promptlayer
import openai
import gradio as gr
from pydantic import BaseModel, Field, validator
#Load the FAISS Model ( vector )
openai.api_key = os.environ["OPENAI_API_KEY"]
db = FAISS.load_local("db", OpenAIEmbeddings())
#API Keys
promptlayer.api_key = os.environ["PROMPTLAYER"]
MODEL = "gpt-3.5-turbo"
# MODEL = "gpt-4"
from langchain.callbacks import PromptLayerCallbackHandler
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
AIMessagePromptTemplate,
HumanMessagePromptTemplate,
)
from langchain.memory import ConversationSummaryMemory
# Defined a QueueCallback, which takes as a Queue object during initialization. Each new token is pushed to the queue.
class QueueCallback(BaseCallbackHandler):
"""Callback handler for streaming LLM responses to a queue."""
def __init__(self, q):
self.q = q
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
self.q.put(token)
def on_llm_end(self, *args, **kwargs: Any) -> None:
return self.q.empty()
MODEL = "gpt-3.5-turbo-16k"
# Defined a QueueCallback, which takes as a Queue object during initialization. Each new token is pushed to the queue.
class QueueCallback(BaseCallbackHandler):
"""Callback handler for streaming LLM responses to a queue."""
def __init__(self, q):
self.q = q
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
self.q.put(token)
def on_llm_end(self, *args, **kwargs: Any) -> None:
return self.q.empty()
class Agent:
def __init__(self, prompt_template='', model_name=MODEL, verbose=False, temp=0.2):
self.verbose = verbose
self.llm = ChatOpenAI(
model_name=MODEL,
temperature=temp
)
#The zero shot prompt provided at creation
self.prompt_template = prompt_template
def chain(self, prompt: PromptTemplate, llm: ChatOpenAI) -> LLMChain:
return LLMChain(
llm=llm,
prompt=prompt,
verbose=self.verbose,
)
def stream(self, input) -> Generator:
# Create a Queue
q = Queue()
job_done = object()
llm = ChatOpenAI(
model_name=MODEL,
callbacks=[QueueCallback(q),
PromptLayerCallbackHandler(pl_tags=["unit-generator"])],
streaming=True,
)
prompt = PromptTemplate(
input_variables=['input'],
template=self.prompt_template
)
# Create a funciton to call - this will run in a thread
def task():
resp = self.chain(prompt,llm).run(
{'input':input})
q.put(job_done)
# Create a thread and start the function
t = Thread(target=task)
t.start()
content = ""
# Get each new token from the queue and yield for our generator
while True:
try:
next_token = q.get(True, timeout=1)
if next_token is job_done:
break
content += next_token
yield next_token, content
except Empty:
continue
unit_generator_prompt = """
Take the following class overview (delimited by three dollar signs)
$$$
{input}
$$$
Do the following:
Make a list of 7 big and enduring ideas that students should walk away with.
Make a list of 7 essential questions we want students to think about.These questions should be open-ended and provocative. Written in "kid friendly" language. Designed to focus instruction for uncovering the important ideas of the content.
Make a list of 7 ideas, concepts, generalizations and principles we want students to know and understand about the unit or topic we are teaching?
Make a list of 7 critical skills describing what we want students to be able to do. Each item should begin with "Students will be able to..."
Make a list of 7 example assessments we can use to give students opportunities to demonstrate their skills. Explain the assessment idea and which key concepts and skills they map to.
Make a list of 7 creative ways that I might adapt the experience for different learning styles. Explain the way I might adapt the experience to the learning style.
Make a list of 7 opportunity that this unit can support the learners development towards the "portrait" of a graduate. Each opportunity should identify the trait and how it might be applied.
"""
unit_generator = Agent(prompt_template=unit_generator_prompt)
lesson_idea_generator_prompt = """
Below is a curriculum unit expressed using the understanding by design methodology ( delimited by the triple dollar signs).
$$$
{input}
$$$
Use this unit definition to generate a list of 10 learning activity ideas inspired by different pedagogies. ( play-based, project-based, game-based, etc.)
Each idea should include a title, a one sentence description of the activity, a one sentence description of how it addresses key concepts from the unit.
"""
lesson_idea_generator = Agent(prompt_template=lesson_idea_generator_prompt)
lesson_builder_prompt = """
Below is a unit expressed using the understanding by design methodology along with a description of a lesson idea ( delimited by the triple dollar signs).
$$$
{input}
$$$
Build a detailed lesson plan from the lesson idea that addresses the unit topics.
Make references to the unit through out the lesson plan.
Include ideas of differentiation and supporting different learners.
Explain how this lesson supports the unit.
"""
lesson_builder = Agent(prompt_template=lesson_builder_prompt)
def generate_unit(input):
for next_token, content in unit_generator.stream(input):
yield(content)
def generate_lesson_ideas(unit):
for next_token, content in lesson_idea_generator.stream(unit):
yield(content)
def generate_lesson_plan(unit,lesson_description):
input = unit + "Lesson description below (delimited by triple ampersand): @@@ " + lesson_description + " @@@"
for next_token, content in lesson_builder.stream(input):
yield(content)
app = gr.Blocks(theme=gr.themes.Soft())
with app:
gr.Markdown(
"""
# Curriculum Co-Creator
A suite of tools for designing and building course units and lessons.
questions?
email: errol.m.king@gmail.com
""")
with gr.Tab("Vision --> Unit"):
gr.Markdown(
"""
The Vision to Unit tool will take an idea of a learning experience and build out a UBD unit.
Instructions:
1) Describe the learning experience. Include a few key topics, age and integrations.
2) Press the 'Generate Unit' button.
3) Review in the unit section.
4) Go to the next section.
""")
unit_vision = gr.Textbox(label="Input your vision here:")
b1 = gr.Button("Generate Unit")
unit = gr.Textbox(label="Generated unit:",show_copy_button=True)
with gr.Tab("Unit --> Lesson Ideas"):
gr.Markdown(
"""
This tool will take the generated unit from the "Vision to Unit" tool to create a few relevant lesson idea.
Instructions:
1) Press the 'Generate Unit' button.
2) Review the ideas.
3) Identify the one you want to expand upon. Highlight and copy to clipboard.
4) Go to the next section.
""")
b2 = gr.Button("Generate Lesson Ideas")
lesson_ideas = gr.Textbox(label="Lesson Ideas:")
with gr.Tab("Lesson Ideas --> Lesson Plan"):
gr.Markdown(
"""
This tool takes an lesson idea and generates a complete lesson plan.
Instructions:
1) Paste one of the generated ideas ( or your own original )
2) Add additional considerations: time, number of kids, age, etc.
3) Press the 'Generate Lesson Plan' button.
4) Read the lesson plan.
5) Do it again!
""")
lesson_description = gr.Textbox(label="Input lesson idea:")
b3 = gr.Button("Generate Lesson Plan")
lesson_plan = gr.Textbox(label="Lesson Plan:",show_copy_button=True)
b1.click(generate_unit, inputs=unit_vision, outputs=unit)
b2.click(generate_lesson_ideas, inputs=unit, outputs=lesson_ideas)
b3.click(generate_lesson_plan, inputs=[unit,lesson_description], outputs=lesson_plan)
app.queue().launch() |