Spaces:
Runtime error
Runtime error
File size: 9,589 Bytes
ce2be79 804b339 0ebeec1 ce2be79 5a07ec5 0ebeec1 ce2be79 0ebeec1 ce2be79 0ebeec1 ce2be79 0ebeec1 ce2be79 0ebeec1 ce2be79 0ebeec1 ce2be79 0ebeec1 ce2be79 804b339 0ebeec1 804b339 0ebeec1 5a07ec5 0ebeec1 5a07ec5 804b339 ce2be79 0ebeec1 ce2be79 0ebeec1 ab6fbc5 0ebeec1 ed01272 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
from langchain.docstore.document import Document
from langchain.vectorstores import FAISS
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.memory.simple import SimpleMemory
from langchain.chains import ConversationChain, LLMChain, SequentialChain
from langchain.memory import ConversationBufferMemory
from langchain.prompts import ChatPromptTemplate, PromptTemplate
from langchain.document_loaders import UnstructuredFileLoader
from langchain.chat_models import ChatOpenAI
from langchain.llms import OpenAI
from langchain.memory import ConversationSummaryMemory
from langchain.callbacks import PromptLayerCallbackHandler
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
AIMessagePromptTemplate,
HumanMessagePromptTemplate,
)
from langchain.schema import AIMessage, HumanMessage, SystemMessage
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.callbacks.base import BaseCallbackHandler
import gradio as gr
from threading import Thread
from queue import Queue, Empty
from threading import Thread
from collections.abc import Generator
from langchain.llms import OpenAI
from langchain.callbacks.base import BaseCallbackHandler
import itertools
import time
import os
import getpass
import json
import sys
from typing import Any, Dict, List, Union
import promptlayer
import openai
import gradio as gr
from pydantic import BaseModel, Field, validator
#Load the FAISS Model ( vector )
openai.api_key = os.environ["OPENAI_API_KEY"]
db = FAISS.load_local("db", OpenAIEmbeddings())
#API Keys
promptlayer.api_key = os.environ["PROMPTLAYER"]
MODEL = "gpt-3.5-turbo"
# MODEL = "gpt-4"
from langchain.callbacks import PromptLayerCallbackHandler
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
AIMessagePromptTemplate,
HumanMessagePromptTemplate,
)
from langchain.memory import ConversationSummaryMemory
# Defined a QueueCallback, which takes as a Queue object during initialization. Each new token is pushed to the queue.
class QueueCallback(BaseCallbackHandler):
"""Callback handler for streaming LLM responses to a queue."""
def __init__(self, q):
self.q = q
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
self.q.put(token)
def on_llm_end(self, *args, **kwargs: Any) -> None:
return self.q.empty()
MODEL = "gpt-3.5-turbo-16k"
# Defined a QueueCallback, which takes as a Queue object during initialization. Each new token is pushed to the queue.
class QueueCallback(BaseCallbackHandler):
"""Callback handler for streaming LLM responses to a queue."""
def __init__(self, q):
self.q = q
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
self.q.put(token)
def on_llm_end(self, *args, **kwargs: Any) -> None:
return self.q.empty()
class UnitGenerator:
def __init__(self, prompt_template='', model_name=MODEL, verbose=False, temp=0.2):
self.verbose = verbose
self.llm = ChatOpenAI(
model_name=MODEL,
temperature=temp
)
#The zero shot prompt provided at creation
self.prompt_template = prompt_template
def chain(self, prompt: PromptTemplate, llm: ChatOpenAI) -> LLMChain:
return LLMChain(
llm=llm,
prompt=prompt,
verbose=self.verbose,
)
def stream(self, input) -> Generator:
# Create a Queue
q = Queue()
job_done = object()
llm = ChatOpenAI(
model_name=MODEL,
callbacks=[QueueCallback(q),
PromptLayerCallbackHandler(pl_tags=["unit-generator"])],
streaming=True,
)
prompt = PromptTemplate(
input_variables=['input'],
template=self.prompt_template
)
# Create a funciton to call - this will run in a thread
def task():
resp = self.chain(prompt,llm).run(
{'input':input})
q.put(job_done)
# Create a thread and start the function
t = Thread(target=task)
t.start()
content = ""
# Get each new token from the queue and yield for our generator
while True:
try:
next_token = q.get(True, timeout=1)
if next_token is job_done:
break
content += next_token
yield next_token, content
except Empty:
continue
agent_prompt = """
Take the following class overview (delimited by three dollar signs)
$$$
{input}
$$$
The following is a "portrait of a graduate" (delimited by three hashtags).
###
CHARACTER & INTEGRITY
➢ Honest:
■ Truthful and transparent in all interactions, both in word and action.
➢ Responsible:
■ Accounts for one's actions and decisions and takes responsibility for the
consequences that arise from them.
➢ Respectful:
■ Treats others with dignity and compassion while valuing their opinions
and perspectives.
➢ Fair:
■ Acts with impartiality and treats all individuals equitably and justly.
■ Applies the tenets of sportsmanship and fair play to all endeavors
❖ KNOWLEDGE & INQUIRY
➢ Curious:
■ Possesses a natural curiosity and a desire to learn.
■ Asks questions, seeks answers, and explores new ideas.
➢ Broad-minded:
■ Considers different points of view and revises their own beliefs and
opinions as they encounter new information and unexpected challenges.
■ Understands that meaningful learning includes wellness of mind and body
➢ Determined:
■ Purposeful, persistent, and willing to work through complex and difficult
challenges to achieve their goals.
➢ Innovative and Creative:
■ Thinks differently and cultivates innovative perspectives, outside of those
traditionally accepted
❖ CITIZENSHIP & CIVILITY
➢ Participates:
■ Actively listens to others, genuinely hearing their perspectives.
■ Communicates perspectives with tact and respect for others' opinions
➢ Ethical:
■ Considers the interests and the well-being of the community, nation, and
the world.
➢ Steward:
■ Committed to social justice, equity, and sustainability.
■ Takes action to effect constructive, and respectful change.
❖ SKILLS & EXPERTISE
➢ Analytical:
■ Distills information, evaluates arguments, and makes informed decisions.
■ Identifies assumptions, biases, and fallacies in arguments.
➢ Collaborative:
■ Encourages the sharing of ideas and opinions.
■ Actively contributes to finding common ground and solutions.
➢ Communicative:
■ Effectively expresses their ideas clearly and succinctly, listens actively to
others, and asks clarifying questions.
➢ Disciplined:
■ Exhibits restraint in the face of distraction
■ Effectively prioritizes needs and responsibilities over desires
■ Mindful of time and other resource constraints, exhibiting balance in the
fulfillment of responsibilities
###
Do the following:
Make a list of 7 big and enduring ideas that students should walk away with.
Make a list of 7 essential questions we want students to think about.These questions should be open-ended and provocative. Written in "kid friendly" language. Designed to focus instruction for uncovering the important ideas of the content.
Make a list of 7 ideas, concepts, generalizations and principles we want students to know and understand about the unit or topic we are teaching?
Make a list of 7 critical skills describing what we want students to be able to do. Each item should begin with "Students will be able to..."
Make a list of 7 example assessments we can use to give students opportunities to demonstrate their skills. Explain the assessment idea and which key concepts and skills they map to.
Make a list of 7 creative ways that I might adapt the experience for different learning styles. Explain the way I might adapt the experience to the learning style.
Make a list of 7 opportunity that this unit can support the learners development towards the "portrait" of a graduate. Each opportunity should identify the trait and how it might be applied.
"""
unit_generator = UnitGenerator(prompt_template=agent_prompt)
def generate_unit(input):
for next_token, content in unit_generator.stream(input):
yield(content)
gr.Interface(generate_unit,
[gr.Textbox(
label="Enter your unit vision.",
info="Provide high level details for the learning experience. Feel free to add any additional integrations, concepts, etc you want incorporated in the unit design."
)],
[gr.Textbox(
label="Unit",
)],allow_flagging="never").queue().launch(debug=True) |