Spaces:
Runtime error
Runtime error
File size: 9,981 Bytes
a9feb59 ce2be79 a9feb59 ce2be79 a9feb59 ce2be79 a9feb59 ce2be79 a9feb59 ce2be79 a9feb59 e33b5db ce2be79 a9feb59 ce2be79 a00e7a6 a9feb59 ce2be79 0ebeec1 ce2be79 0ebeec1 12a66ee 0ebeec1 a9feb59 ce2be79 a9feb59 0ebeec1 ce2be79 0ebeec1 a9feb59 ce2be79 0ebeec1 ce2be79 0ebeec1 ce2be79 97cc067 7f78bf1 0ebeec1 804b339 0ebeec1 5a07ec5 118bdfd 97cc067 118bdfd 97cc067 118bdfd 97cc067 118bdfd 97cc067 7f78bf1 843e388 7f78bf1 97cc067 7f78bf1 97cc067 7f78bf1 843e388 118bdfd 97cc067 ce2be79 843e388 0ebeec1 ce2be79 97cc067 7f78bf1 97cc067 7f78bf1 97cc067 7f78bf1 97cc067 7f78bf1 97cc067 7f78bf1 97cc067 7f78bf1 97cc067 7f78bf1 97cc067 7f78bf1 97cc067 7f78bf1 97cc067 7f78bf1 97cc067 7f78bf1 97cc067 7f78bf1 97cc067 7f78bf1 f462fc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
#0.0.1
import openai
#Langchain Imports
from langchain.prompts import ChatPromptTemplate
from langchain.chat_models import ChatOpenAI
from langchain.schema import StrOutputParser
#Type Hinting
from typing import Any, Callable, Dict, List, Literal, Optional, Tuple, Type, Union
#Utils
from operator import itemgetter
import json
from dataclasses import dataclass
import sys
import logging
from queue import Queue, Empty
from threading import Thread
import gradio as gr
openai.api_key = os.environ["OPENAI_API_KEY"]
MODEL = "gpt-3.5-turbo-16k"
# Defined a QueueCallback, which takes as a Queue object during initialization. Each new token is pushed to the queue.
class QueueCallback(BaseCallbackHandler):
"""Callback handler for streaming LLM responses to a queue."""
def __init__(self, q):
self.q = q
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
self.q.put(token)
def on_llm_end(self, *args, **kwargs: Any) -> None:
return self.q.empty()
# Defined a QueueCallback, which takes as a Queue object during initialization. Each new token is pushed to the queue.
class QueueCallback(BaseCallbackHandler):
"""Callback handler for streaming LLM responses to a queue."""
def __init__(self, q):
self.q = q
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
self.q.put(token)
def on_llm_end(self, *args, **kwargs: Any) -> None:
return self.q.empty()
class Agent:
def __init__(self, prompt_template='', model_name=MODEL, verbose=True, temp=0.2):
self.verbose = verbose
self.llm = ChatOpenAI(
openai_api_key=api_key,
model_name=MODEL,
temperature=temp
)
#The zero shot prompt provided at creation
self.prompt_template = prompt_template
def chain(self, prompt: PromptTemplate, llm: ChatOpenAI) -> LLMChain:
return LLMChain(
llm=llm,
prompt=prompt,
verbose=self.verbose,
)
def stream(self, input) -> Generator:
# Create a Queue
q = Queue()
job_done = object()
llm = ChatOpenAI(
model_name=MODEL,
callbacks=[QueueCallback(q)],
streaming=True,
)
prompt = PromptTemplate(
input_variables=['input'],
template=self.prompt_template
)
# Create a funciton to call - this will run in a thread
def task():
resp = self.chain(prompt,llm).run(
{'input':input})
q.put(job_done)
# Create a thread and start the function
t = Thread(target=task)
t.start()
content = ""
# Get each new token from the queue and yield for our generator
while True:
try:
next_token = q.get(True, timeout=1)
if next_token is job_done:
break
content += next_token
yield next_token, content
except Empty:
continue
unit_generator_prompt = """
Take the following class overview (delimited by three dollar signs)
$$$
{input}
$$$
Do the following:
Enduring Ideas: Make a list of 5 big and enduring ideas that students should walk away with.
Essential Questions: Make a list of 5 essential questions we want students to think about. These questions should be open-ended and provocative. Written in "kid friendly" language. Designed to focus instruction for uncovering the important ideas of the content.
Key Concepts: Make a list of 5 ideas, concepts, generalizations and principles we want students to know and understand about the unit or topic we are teaching?
Misconceptions: Make a list of 5 common misconceptions that occur when learning about this topic.
Skills: Make a list of 5 critical skills describing what we want students to be able to do. Each item should begin with "Students will be able to..."
Real-World Applications: Make a list of 5 ways that this skill can be used in "the real world"
Assessment: Make a list of 5 example assessments we can use to give students opportunities to demonstrate their skills. Explain the assessment idea and which key concepts and skills they map to.
Different Learners: Make a list of 5 creative ways that I might adapt the experience for different learning styles making it more universally accessible. Explain the way I might adapt the experience to the learning style.
Character: Make a list of 5 opportunity that this unit can support the learners development towards the "portrait" of a graduate. Each opportunity should identify the trait and how it might be applied.
"""
unit_generator = Agent(prompt_template=unit_generator_prompt)
lesson_idea_generator_prompt = """
Below is a curriculum unit expressed using the understanding by design methodology ( delimited by the triple dollar signs).
$$$
{input}
$$$
Using this unit definition and STUDENT INTERESTS generate 10 unique learning activity idea inspired by different pedagogies. ( play-based, project-based, game-based, etc.)
Each idea should include the randomly selected pedagogy, a title, a one sentence description of the activity, a one sentence description of how it addresses key concepts from the unit and one sentence explaining how it supports STUDENT INTERESTS.
"""
lesson_idea_generator = Agent(prompt_template=lesson_idea_generator_prompt)
lesson_builder_prompt = """
The curriculum unit details are provided below (delimited by triple percent signs):
%%% {input} %%%
Use the curriculum unit and lesson description to generate a lesson plan using the universal by design methdology.
Engagement: How will you capture the students' interest and introduce the topic at the start of the lesson? Reference relevant unit details by section and number (example: Key Concepts #4, Skills #2, etc ).
Steps: Build a step-by-step sequence and time schedule of activities and discussions for this lesson. Reference relevant unit details by section and number (example: Key Concepts #4, Skills #2, etc ).
Alternative Representations: List 3 different ways the key concepts might be expressed or explained that could help different learners make the connection.
Resources: What tools, materials, or resources will you need to effectively deliver this lesson?
Resource add-ons: List 3 additional technologies, tools or resources ( not listed above ) that might add more interest or enagagement for students. Explain why you chose them.
Assessment: Create a plan to measure students' understanding and mastery of the lesson's objectives. List at least 3 alternative ways for students to express their knowledge and skills. Reference the example assessments in the unit details. Reference relevant unit details by section and number (example: Key Concepts #4, Skills #2, etc ).
Support: List 5 ways to provide support and feedback to each student.
Expression: List 5 examples of ways they might personally express themselves throughout the lesson.
Unit connections: Summarize the ways that this lesson plan supports the unit details. Reference relevant unit details by section and number (example: Key Concepts #4, Skills #2, etc ).
"""
lesson_builder = Agent(prompt_template=lesson_builder_prompt)
def generate_unit(input):
for next_token, content in unit_generator.stream(input):
yield(content)
def generate_lesson_ideas(unit, interests):
input = unit + " \n\n STUDENT INTERESTS (delimited by triple ampersand): @@@ " + interests + " @@@"
for next_token, content in lesson_idea_generator.stream(input):
yield(content)
def generate_lesson_plan(unit,lesson_description, student_interests):
input = unit + "Lesson description below (delimited by triple ampersand): @@@ " + lesson_description + " @@@ " + "\n\nSTUDENT INTEREST description below (delimited by triple hashtag): ### " + student_interests + " ###"
for next_token, content in lesson_builder.stream(input):
yield(content)
app = gr.Blocks(theme=gr.themes.Soft())
with app:
gr.Markdown(
"""
# Syllabo
A suite of generative ai tools for designing and building learning experiences.
""")
with gr.Tab("Unit Builder"):
gr.Markdown(
"""
Use this tool to create a unit inspired by the Understanding by Design framework.
""")
unit_vision = gr.Textbox(label="Enter topic, activity or standard(s):")
b1 = gr.Button("Make Unit")
unit = gr.Textbox(label="Unit",show_copy_button=True)
with gr.Tab("Lesson Generator"):
gr.Markdown(
"""
Use this tool to generate ideas for lesson activities. \n
The tool will select from a range of pedagogies.\n
Note: It will use the unit generated from the "unit builder" and any notes on student interest you add below. \n
If you like an idea copy and paste it into the next tool.
""")
student_interests = gr.Textbox(label="General student interests, cultures & strengths")
b2 = gr.Button("Generate Activities")
lesson_ideas = gr.Textbox(label="Lesson Concepts")
with gr.Tab("Lesson Builder"):
gr.Markdown(
"""
This tool takes a lesson idea and generates a lesson plan inspired by the Universal by Design framework.
""")
lesson_description = gr.Textbox(label="Input lesson idea:")
b3 = gr.Button("Generate Lesson Plan")
lesson_plan = gr.Textbox(label="Lesson Plan",show_copy_button=True)
b1.click(generate_unit, inputs=unit_vision, outputs=unit)
b2.click(generate_lesson_ideas, inputs=[unit,student_interests], outputs=lesson_ideas)
b3.click(generate_lesson_plan, inputs=[unit,student_interests,lesson_description], outputs=lesson_plan)
app.queue().launch() |