File size: 2,869 Bytes
ec9ef8b
4e86ef1
54210ca
 
4e86ef1
b5d991e
4e86ef1
b5d991e
 
 
 
 
 
4e86ef1
f24bed6
4e86ef1
 
 
 
 
 
 
d002017
d087072
d002017
436b052
 
54210ca
 
e030ac0
54210ca
 
 
 
 
e030ac0
54210ca
4e86ef1
 
 
 
 
 
 
 
54210ca
4e86ef1
 
54210ca
 
 
 
e030ac0
 
4e86ef1
 
e030ac0
 
 
 
 
4e86ef1
 
 
 
 
 
 
 
 
 
 
4f6e66f
e030ac0
 
f24bed6
4e86ef1
 
 
abad0fd
23432db
4e86ef1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import TapexTokenizer, BartForConditionalGeneration
import pandas as pd
#import pkg_resources

'''
# Get a list of installed packages and their versions
installed_packages = {pkg.key: pkg.version for pkg in pkg_resources.working_set}

# Print the list of packages
for package, version in installed_packages.items():
    print(f"{package}=={version}")
'''

# Load the chatbot model
chatbot_model_name = "gpt2"
chatbot_tokenizer = AutoTokenizer.from_pretrained(chatbot_model_name)
chatbot_model = AutoModelForCausalLM.from_pretrained(chatbot_model_name)


# Load the SQL Model
#wikisql take longer to process
#model_name = "microsoft/tapex-large-finetuned-wikisql"  # You can change this to any other model from the list above
#model_name = "microsoft/tapex-base-finetuned-wikisql"
model_name = "microsoft/tapex-large-finetuned-wtq"
#model_name = "microsoft/tapex-base-finetuned-wtq"
tokenizer = TapexTokenizer.from_pretrained(model_name)
model = BartForConditionalGeneration.from_pretrained(model_name)

data = {
    "year": [1896, 1900, 1904, 2004, 2008, 2012],
    "city": ["athens", "paris", "st. louis", "athens", "beijing", "london"]
}
table = pd.DataFrame.from_dict(data)

def chatbot_response(user_message):
    # Generate chatbot response using the chatbot model
    inputs = chatbot_tokenizer.encode("User: " + user_message, return_tensors="pt")
    outputs = chatbot_model.generate(inputs, max_length=100, num_return_sequences=1)
    response = chatbot_tokenizer.decode(outputs[0], skip_special_tokens=True)

    return response

def sql_response(user_query):
    
    #inputs = tokenizer.encode("User: " + user_query, return_tensors="pt")
    inputs = user_query
    encoding = tokenizer(table=table, query=inputs, return_tensors="pt")
    outputs = model.generate(**encoding)
    response = tokenizer.batch_decode(outputs, skip_special_tokens=True)
    
    return response

# Define the chatbot and SQL execution interfaces using Gradio
chatbot_interface = gr.Interface(
    fn=chatbot_response,
    inputs=gr.Textbox(prompt="You:"),
    outputs=gr.Textbox(),
    live=True,
    capture_session=True,
    title="Chatbot",
    description="Type your message in the box above, and the chatbot will respond.",
)

# Define the chatbot interface using Gradio
sql_interface = gr.Interface(
    fn=sql_response,
    inputs=gr.Textbox(prompt="You:"),
    outputs=gr.Textbox(),
    live=True,
    capture_session=True,
    title="ST SQL Chatbot",
    description="Type your message in the box above, and the chatbot will respond.",
)

# Combine the chatbot and SQL execution interfaces
combined_interface = gr.Interface([chatbot_interface, sql_interface], layout="horizontal")

# Launch the Gradio interface
if __name__ == "__main__":
    combined_interface.launch()