Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import transformers | |
from llava.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX | |
from llava.conversation import conv_templates | |
from llava.model.llava_gpt2 import LlavaGpt2ForCausalLM | |
from llava.train.arguments_dataclass import ModelArguments, DataArguments, TrainingArguments | |
from llava.train.dataset import tokenizer_image_token | |
# load model | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.bfloat16 if device=="cuda" else torch.float32 | |
model_path = 'toshi456/llava-jp-1.3b-v1.1' | |
model = LlavaGpt2ForCausalLM.from_pretrained( | |
model_path, | |
low_cpu_mem_usage=True, | |
use_safetensors=True, | |
torch_dtype=torch_dtype, | |
device_map=device, | |
) | |
tokenizer = transformers.AutoTokenizer.from_pretrained( | |
model_path, | |
model_max_length=1024, | |
padding_side="right", | |
use_fast=False, | |
) | |
model.eval() | |
conv_mode = "v1" | |
def inference_fn( | |
image, | |
prompt, | |
max_len, | |
temperature, | |
top_p, | |
): | |
# prepare inputs | |
# image pre-process | |
image_size = model.get_model().vision_tower.image_processor.size["height"] | |
if model.get_model().vision_tower.scales is not None: | |
image_size = model.get_model().vision_tower.image_processor.size["height"] * len(model.get_model().vision_tower.scales) | |
if device == "cuda": | |
image_tensor = model.get_model().vision_tower.image_processor( | |
image, | |
return_tensors='pt', | |
size={"height": image_size, "width": image_size} | |
)['pixel_values'].half().cuda().to(torch_dtype) | |
else: | |
image_tensor = model.get_model().vision_tower.image_processor( | |
image, | |
return_tensors='pt', | |
size={"height": image_size, "width": image_size} | |
)['pixel_values'].to(torch_dtype) | |
# create prompt | |
inp = DEFAULT_IMAGE_TOKEN + '\n' + prompt | |
conv = conv_templates[conv_mode].copy() | |
conv.append_message(conv.roles[0], inp) | |
conv.append_message(conv.roles[1], None) | |
prompt = conv.get_prompt() | |
input_ids = tokenizer_image_token( | |
prompt, | |
tokenizer, | |
IMAGE_TOKEN_INDEX, | |
return_tensors='pt' | |
).unsqueeze(0) | |
if device == "cuda": | |
input_ids = input_ids.to(device) | |
input_ids = input_ids[:, :-1] # </sep>ใinputใฎๆๅพใซๅ ฅใใฎใงๅ้คใใ | |
# generate | |
output_ids = model.generate( | |
inputs=input_ids, | |
images=image_tensor, | |
do_sample= temperature != 0.0, | |
temperature=temperature, | |
top_p=top_p, | |
max_new_tokens=max_len, | |
use_cache=True, | |
) | |
output_ids = [token_id for token_id in output_ids.tolist()[0] if token_id != IMAGE_TOKEN_INDEX] | |
output = tokenizer.decode(output_ids, skip_special_tokens=True) | |
target = "ใทในใใ : " | |
idx = output.find(target) | |
output = output[idx+len(target):] | |
return output | |
with gr.Blocks() as demo: | |
gr.Markdown(f"# LLaVA-JP Demo") | |
with gr.Row(): | |
with gr.Column(): | |
# input_instruction = gr.TextArea(label="instruction", value=DEFAULT_INSTRUCTION) | |
input_image = gr.Image(type="pil", label="image") | |
prompt = gr.Textbox(label="prompt (optional)", value="") | |
with gr.Accordion(label="Configs", open=False): | |
max_len = gr.Slider( | |
minimum=10, | |
maximum=256, | |
value=128, | |
step=5, | |
interactive=True, | |
label="Max New Tokens", | |
) | |
temperature = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
value=0.1, | |
step=0.1, | |
interactive=True, | |
label="Temperature", | |
) | |
top_p = gr.Slider( | |
minimum=0.5, | |
maximum=1.0, | |
value=0.9, | |
step=0.1, | |
interactive=True, | |
label="Top p", | |
) | |
# button | |
input_button = gr.Button(value="Submit") | |
with gr.Column(): | |
output = gr.Textbox(label="Output") | |
inputs = [input_image, prompt, max_len, temperature, top_p] | |
input_button.click(inference_fn, inputs=inputs, outputs=[output]) | |
prompt.submit(inference_fn, inputs=inputs, outputs=[output]) | |
img2txt_examples = gr.Examples(examples=[ | |
[ | |
"./imgs/sample1.jpg", | |
"็ซใฏไฝใใใฆใใพใใ๏ผ", | |
32, | |
0.0, | |
0.9, | |
], | |
[ | |
"./imgs/sample2.jpg", | |
"ใใฎ่ชๅ่ฒฉๅฃฒๆฉใซใฏใฉใฎใใฉใณใใฎ้ฃฒๆใๅซใพใใฆใใพใใ๏ผ", | |
256, | |
0.0, | |
0.9, | |
], | |
[ | |
"./imgs/sample3.jpg", | |
"ใใฎๆ็ใฎไฝใๆนใๆใใฆใใ ใใใ", | |
256, | |
0.0, | |
0.9, | |
], | |
[ | |
"./imgs/sample4.jpg", | |
"ใใฎใณใณใใฅใผใฟใฎๅๅใๆใใฆใใ ใใใ", | |
256, | |
0.0, | |
0.9, | |
], | |
[ | |
"./imgs/sample5.jpg", | |
"ใใใใไฝฟใฃใฆไฝใใใจใใงใใๆ็ใๆใใฆใใ ใใใ", | |
256, | |
0.0, | |
0.9, | |
], | |
], inputs=inputs) | |
if __name__ == "__main__": | |
demo.queue().launch(share=True) | |