Spaces:
Runtime error
Runtime error
File size: 2,576 Bytes
64e5cd7 76ad0c5 64e5cd7 69ff57c 76ad0c5 69ff57c 76ad0c5 69ff57c 76ad0c5 69ff57c 76ad0c5 69ff57c 76ad0c5 69ff57c 76ad0c5 69ff57c 76ad0c5 69ff57c 76ad0c5 64e5cd7 69ff57c 82712b8 69ff57c c9ddf85 69ff57c d69a011 69ff57c 76ad0c5 69ff57c 76ad0c5 69ff57c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
import gradio as gr
import numpy as np
from PIL import Image
import requests
import hopsworks
import joblib
# project = hopsworks.login(api_key_value="rA4UUi0EGe9o2Lpo.xoqva15Ia7l8Fz7PBFrFTV4WjSG8B1aQofJlVp3oV3Xp0iHyFTzw5ybC4OapypyU")
# fs = project.get_feature_store()
# #q
# mr = project.get_model_registry()
# model = mr.get_model("titanic_modal", version=1)
# model_dir = model.download()
# model = joblib.load(model_dir + "/titanic_model.pkl")
# def titanic(pclass, sex, age, sibsp, parch, fare, embarked):
# input_list = []
# input_list.append(pclass)
# input_list.append(sex)
# input_list.append(age)
# input_list.append(sibsp)
# input_list.append(parch)
# input_list.append(fare)
# input_list.append(embarked)
# # 'res' is a list of predictions returned as the label.
# res = model.predict(np.asarray(input_list).reshape(1, -1))
# # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want
# # the first element.
# return res[0]
# demo = gr.Interface(
# fn=titanic,
# title="Titanic Predictive Analytics",
# description="Experiment to predict if a passenger survived the Titanic disaster",
# allow_flagging="never",
# inputs=[
# gr.inputs.Number(default=1.0, label="PClass"),
# gr.inputs.Number(default=1.0, label="Sex: Female = 0, Male = 1"),
# gr.inputs.Number(default=1.0, label="Age"),
# gr.inputs.Number(default=1.0, label="SibSp"),
# gr.inputs.Number(default=1.0, label="Parch"),
# gr.inputs.Number(default=1.0, label="Fare"),
# gr.inputs.Number(default=1.0, label="Embarked: S = 0, C = 1, Q = 2"),
# ],
# outputs=gr.Textbox())
# demo.launch()
# monitoring part of the code
import gradio as gr
from PIL import Image
import hopsworks
project = hopsworks.login(api_key_value="otd1BvtKwvlF8OC1.Y8Kyt1QpZqDPMRNPIF3KvVGuFJpRdxIy39879ueQwymTgSDUU9vWKFMOnBqsyxfk")
fs = project.get_feature_store()
#s
dataset_api = project.get_dataset_api()
dataset_api.download("Resources/images/df_recent.png")
dataset_api.download("Resources/images/confusion_matrix.png")
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
gr.Label("Recent Prediction History")
input_img = gr.Image("df_recent.png", elem_id="recent-predictions")
with gr.Column():
gr.Label("Confusion Maxtrix with Historical Prediction Performance")
input_img = gr.Image("confusion_matrix.png", elem_id="confusion-matrix")
demo.launch() |