File size: 2,576 Bytes
64e5cd7
 
 
 
76ad0c5
64e5cd7
 
 
69ff57c
 
 
76ad0c5
69ff57c
 
 
 
76ad0c5
69ff57c
76ad0c5
69ff57c
 
 
 
 
 
 
76ad0c5
69ff57c
 
76ad0c5
69ff57c
 
76ad0c5
69ff57c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76ad0c5
69ff57c
76ad0c5
64e5cd7
69ff57c
 
 
 
 
 
c9ddf85
69ff57c
d69a011
 
69ff57c
 
76ad0c5
69ff57c
 
 
 
 
 
 
 
76ad0c5
69ff57c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import gradio as gr
import numpy as np
from PIL import Image
import requests

import hopsworks
import joblib

# project = hopsworks.login(api_key_value="rA4UUi0EGe9o2Lpo.xoqva15Ia7l8Fz7PBFrFTV4WjSG8B1aQofJlVp3oV3Xp0iHyFTzw5ybC4OapypyU")
# fs = project.get_feature_store()
# #q

# mr = project.get_model_registry()
# model = mr.get_model("titanic_modal", version=1)
# model_dir = model.download()
# model = joblib.load(model_dir + "/titanic_model.pkl")

# def titanic(pclass, sex, age, sibsp, parch, fare, embarked):
#     input_list = []
#     input_list.append(pclass)
#     input_list.append(sex)
#     input_list.append(age)
#     input_list.append(sibsp)
#     input_list.append(parch)
#     input_list.append(fare)
#     input_list.append(embarked)
#     # 'res' is a list of predictions returned as the label.
#     res = model.predict(np.asarray(input_list).reshape(1, -1))
#     # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want
#     # the first element.
#     return res[0]

        
# demo = gr.Interface(
#     fn=titanic,
#     title="Titanic Predictive Analytics",
#     description="Experiment to predict if a passenger survived the Titanic disaster",
#     allow_flagging="never",
#     inputs=[
#         gr.inputs.Number(default=1.0, label="PClass"),
#         gr.inputs.Number(default=1.0, label="Sex: Female = 0, Male = 1"),
#         gr.inputs.Number(default=1.0, label="Age"),
#         gr.inputs.Number(default=1.0, label="SibSp"),
#         gr.inputs.Number(default=1.0, label="Parch"),
#         gr.inputs.Number(default=1.0, label="Fare"),
#         gr.inputs.Number(default=1.0, label="Embarked: S = 0, C = 1, Q = 2"),
#         ],
#     outputs=gr.Textbox())

# demo.launch()

# monitoring part of the code
import gradio as gr
from PIL import Image
import hopsworks

project = hopsworks.login(api_key_value="rA4UUi0EGe9o2Lpo.xoqva15Ia7l8Fz7PBFrFTV4WjSG8B1aQofJlVp3oV3Xp0iHyFTzw5ybC4OapypyU")
fs = project.get_feature_store()
#s
dataset_api = project.get_dataset_api()


dataset_api.download("Resources/images/df_recent.png")
dataset_api.download("Resources/images/confusion_matrix.png")

with gr.Blocks() as demo:
    with gr.Row():
      with gr.Column():
          gr.Label("Recent Prediction History")
          input_img = gr.Image("df_recent.png", elem_id="recent-predictions")
      with gr.Column():          
          gr.Label("Confusion Maxtrix with Historical Prediction Performance")
          input_img = gr.Image("confusion_matrix.png", elem_id="confusion-matrix")        

demo.launch()