Spaces:
Build error
Build error
import os | |
import csv | |
import numpy as np | |
from scipy.optimize import linear_sum_assignment | |
from ._base_dataset import _BaseDataset | |
from .. import utils | |
from ..utils import TrackEvalException | |
from .. import _timing | |
class Kitti2DBox(_BaseDataset): | |
"""Dataset class for KITTI 2D bounding box tracking""" | |
def get_default_dataset_config(): | |
"""Default class config values""" | |
code_path = utils.get_code_path() | |
default_config = { | |
'GT_FOLDER': os.path.join(code_path, 'data/gt/kitti/kitti_2d_box_train'), # Location of GT data | |
'TRACKERS_FOLDER': os.path.join(code_path, 'data/trackers/kitti/kitti_2d_box_train/'), # Trackers location | |
'OUTPUT_FOLDER': None, # Where to save eval results (if None, same as TRACKERS_FOLDER) | |
'TRACKERS_TO_EVAL': None, # Filenames of trackers to eval (if None, all in folder) | |
'CLASSES_TO_EVAL': ['car', 'pedestrian'], # Valid: ['car', 'pedestrian'] | |
'SPLIT_TO_EVAL': 'training', # Valid: 'training', 'val', 'training_minus_val', 'test' | |
'INPUT_AS_ZIP': False, # Whether tracker input files are zipped | |
'PRINT_CONFIG': True, # Whether to print current config | |
'TRACKER_SUB_FOLDER': 'data', # Tracker files are in TRACKER_FOLDER/tracker_name/TRACKER_SUB_FOLDER | |
'OUTPUT_SUB_FOLDER': '', # Output files are saved in OUTPUT_FOLDER/tracker_name/OUTPUT_SUB_FOLDER | |
'TRACKER_DISPLAY_NAMES': None, # Names of trackers to display, if None: TRACKERS_TO_EVAL | |
} | |
return default_config | |
def __init__(self, config=None): | |
"""Initialise dataset, checking that all required files are present""" | |
super().__init__() | |
# Fill non-given config values with defaults | |
self.config = utils.init_config(config, self.get_default_dataset_config(), self.get_name()) | |
self.gt_fol = self.config['GT_FOLDER'] | |
self.tracker_fol = self.config['TRACKERS_FOLDER'] | |
self.should_classes_combine = False | |
self.use_super_categories = False | |
self.data_is_zipped = self.config['INPUT_AS_ZIP'] | |
self.output_fol = self.config['OUTPUT_FOLDER'] | |
if self.output_fol is None: | |
self.output_fol = self.tracker_fol | |
self.tracker_sub_fol = self.config['TRACKER_SUB_FOLDER'] | |
self.output_sub_fol = self.config['OUTPUT_SUB_FOLDER'] | |
self.max_occlusion = 2 | |
self.max_truncation = 0 | |
self.min_height = 25 | |
# Get classes to eval | |
self.valid_classes = ['car', 'pedestrian'] | |
self.class_list = [cls.lower() if cls.lower() in self.valid_classes else None | |
for cls in self.config['CLASSES_TO_EVAL']] | |
if not all(self.class_list): | |
raise TrackEvalException('Attempted to evaluate an invalid class. Only classes [car, pedestrian] are valid.') | |
self.class_name_to_class_id = {'car': 1, 'van': 2, 'truck': 3, 'pedestrian': 4, 'person': 5, # person sitting | |
'cyclist': 6, 'tram': 7, 'misc': 8, 'dontcare': 9, 'car_2': 1} | |
# Get sequences to eval and check gt files exist | |
self.seq_list = [] | |
self.seq_lengths = {} | |
seqmap_name = 'evaluate_tracking.seqmap.' + self.config['SPLIT_TO_EVAL'] | |
seqmap_file = os.path.join(self.gt_fol, seqmap_name) | |
if not os.path.isfile(seqmap_file): | |
raise TrackEvalException('no seqmap found: ' + os.path.basename(seqmap_file)) | |
with open(seqmap_file) as fp: | |
dialect = csv.Sniffer().sniff(fp.read(1024)) | |
fp.seek(0) | |
reader = csv.reader(fp, dialect) | |
for row in reader: | |
if len(row) >= 4: | |
seq = row[0] | |
self.seq_list.append(seq) | |
self.seq_lengths[seq] = int(row[3]) | |
if not self.data_is_zipped: | |
curr_file = os.path.join(self.gt_fol, 'label_02', seq + '.txt') | |
if not os.path.isfile(curr_file): | |
raise TrackEvalException('GT file not found: ' + os.path.basename(curr_file)) | |
if self.data_is_zipped: | |
curr_file = os.path.join(self.gt_fol, 'data.zip') | |
if not os.path.isfile(curr_file): | |
raise TrackEvalException('GT file not found: ' + os.path.basename(curr_file)) | |
# Get trackers to eval | |
if self.config['TRACKERS_TO_EVAL'] is None: | |
self.tracker_list = os.listdir(self.tracker_fol) | |
else: | |
self.tracker_list = self.config['TRACKERS_TO_EVAL'] | |
if self.config['TRACKER_DISPLAY_NAMES'] is None: | |
self.tracker_to_disp = dict(zip(self.tracker_list, self.tracker_list)) | |
elif (self.config['TRACKERS_TO_EVAL'] is not None) and ( | |
len(self.config['TRACKER_DISPLAY_NAMES']) == len(self.tracker_list)): | |
self.tracker_to_disp = dict(zip(self.tracker_list, self.config['TRACKER_DISPLAY_NAMES'])) | |
else: | |
raise TrackEvalException('List of tracker files and tracker display names do not match.') | |
for tracker in self.tracker_list: | |
if self.data_is_zipped: | |
curr_file = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol + '.zip') | |
if not os.path.isfile(curr_file): | |
raise TrackEvalException('Tracker file not found: ' + tracker + '/' + os.path.basename(curr_file)) | |
else: | |
for seq in self.seq_list: | |
curr_file = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol, seq + '.txt') | |
if not os.path.isfile(curr_file): | |
raise TrackEvalException( | |
'Tracker file not found: ' + tracker + '/' + self.tracker_sub_fol + '/' + os.path.basename( | |
curr_file)) | |
def get_display_name(self, tracker): | |
return self.tracker_to_disp[tracker] | |
def _load_raw_file(self, tracker, seq, is_gt): | |
"""Load a file (gt or tracker) in the kitti 2D box format | |
If is_gt, this returns a dict which contains the fields: | |
[gt_ids, gt_classes] : list (for each timestep) of 1D NDArrays (for each det). | |
[gt_dets, gt_crowd_ignore_regions]: list (for each timestep) of lists of detections. | |
[gt_extras] : list (for each timestep) of dicts (for each extra) of 1D NDArrays (for each det). | |
if not is_gt, this returns a dict which contains the fields: | |
[tracker_ids, tracker_classes, tracker_confidences] : list (for each timestep) of 1D NDArrays (for each det). | |
[tracker_dets]: list (for each timestep) of lists of detections. | |
""" | |
# File location | |
if self.data_is_zipped: | |
if is_gt: | |
zip_file = os.path.join(self.gt_fol, 'data.zip') | |
else: | |
zip_file = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol + '.zip') | |
file = seq + '.txt' | |
else: | |
zip_file = None | |
if is_gt: | |
file = os.path.join(self.gt_fol, 'label_02', seq + '.txt') | |
else: | |
file = os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol, seq + '.txt') | |
# Ignore regions | |
if is_gt: | |
crowd_ignore_filter = {2: ['dontcare']} | |
else: | |
crowd_ignore_filter = None | |
# Valid classes | |
valid_filter = {2: [x for x in self.class_list]} | |
if is_gt: | |
if 'car' in self.class_list: | |
valid_filter[2].append('van') | |
if 'pedestrian' in self.class_list: | |
valid_filter[2] += ['person'] | |
# Convert kitti class strings to class ids | |
convert_filter = {2: self.class_name_to_class_id} | |
# Load raw data from text file | |
read_data, ignore_data = self._load_simple_text_file(file, time_col=0, id_col=1, remove_negative_ids=True, | |
valid_filter=valid_filter, | |
crowd_ignore_filter=crowd_ignore_filter, | |
convert_filter=convert_filter, | |
is_zipped=self.data_is_zipped, zip_file=zip_file) | |
# Convert data to required format | |
num_timesteps = self.seq_lengths[seq] | |
data_keys = ['ids', 'classes', 'dets'] | |
if is_gt: | |
data_keys += ['gt_crowd_ignore_regions', 'gt_extras'] | |
else: | |
data_keys += ['tracker_confidences'] | |
raw_data = {key: [None] * num_timesteps for key in data_keys} | |
# Check for any extra time keys | |
current_time_keys = [str(t) for t in range(num_timesteps)] | |
extra_time_keys = [x for x in read_data.keys() if x not in current_time_keys] | |
if len(extra_time_keys) > 0: | |
if is_gt: | |
text = 'Ground-truth' | |
else: | |
text = 'Tracking' | |
raise TrackEvalException( | |
text + ' data contains the following invalid timesteps in seq %s: ' % seq + ', '.join( | |
[str(x) + ', ' for x in extra_time_keys])) | |
for t in range(num_timesteps): | |
time_key = str(t) | |
if time_key in read_data.keys(): | |
time_data = np.asarray(read_data[time_key], dtype=np.float) | |
raw_data['dets'][t] = np.atleast_2d(time_data[:, 6:10]) | |
raw_data['ids'][t] = np.atleast_1d(time_data[:, 1]).astype(int) | |
raw_data['classes'][t] = np.atleast_1d(time_data[:, 2]).astype(int) | |
if is_gt: | |
gt_extras_dict = {'truncation': np.atleast_1d(time_data[:, 3].astype(int)), | |
'occlusion': np.atleast_1d(time_data[:, 4].astype(int))} | |
raw_data['gt_extras'][t] = gt_extras_dict | |
else: | |
if time_data.shape[1] > 17: | |
raw_data['tracker_confidences'][t] = np.atleast_1d(time_data[:, 17]) | |
else: | |
raw_data['tracker_confidences'][t] = np.ones(time_data.shape[0]) | |
else: | |
raw_data['dets'][t] = np.empty((0, 4)) | |
raw_data['ids'][t] = np.empty(0).astype(int) | |
raw_data['classes'][t] = np.empty(0).astype(int) | |
if is_gt: | |
gt_extras_dict = {'truncation': np.empty(0), | |
'occlusion': np.empty(0)} | |
raw_data['gt_extras'][t] = gt_extras_dict | |
else: | |
raw_data['tracker_confidences'][t] = np.empty(0) | |
if is_gt: | |
if time_key in ignore_data.keys(): | |
time_ignore = np.asarray(ignore_data[time_key], dtype=np.float) | |
raw_data['gt_crowd_ignore_regions'][t] = np.atleast_2d(time_ignore[:, 6:10]) | |
else: | |
raw_data['gt_crowd_ignore_regions'][t] = np.empty((0, 4)) | |
if is_gt: | |
key_map = {'ids': 'gt_ids', | |
'classes': 'gt_classes', | |
'dets': 'gt_dets'} | |
else: | |
key_map = {'ids': 'tracker_ids', | |
'classes': 'tracker_classes', | |
'dets': 'tracker_dets'} | |
for k, v in key_map.items(): | |
raw_data[v] = raw_data.pop(k) | |
raw_data['num_timesteps'] = num_timesteps | |
raw_data['seq'] = seq | |
return raw_data | |
def get_preprocessed_seq_data(self, raw_data, cls): | |
""" Preprocess data for a single sequence for a single class ready for evaluation. | |
Inputs: | |
- raw_data is a dict containing the data for the sequence already read in by get_raw_seq_data(). | |
- cls is the class to be evaluated. | |
Outputs: | |
- data is a dict containing all of the information that metrics need to perform evaluation. | |
It contains the following fields: | |
[num_timesteps, num_gt_ids, num_tracker_ids, num_gt_dets, num_tracker_dets] : integers. | |
[gt_ids, tracker_ids, tracker_confidences]: list (for each timestep) of 1D NDArrays (for each det). | |
[gt_dets, tracker_dets]: list (for each timestep) of lists of detections. | |
[similarity_scores]: list (for each timestep) of 2D NDArrays. | |
Notes: | |
General preprocessing (preproc) occurs in 4 steps. Some datasets may not use all of these steps. | |
1) Extract only detections relevant for the class to be evaluated (including distractor detections). | |
2) Match gt dets and tracker dets. Remove tracker dets that are matched to a gt det that is of a | |
distractor class, or otherwise marked as to be removed. | |
3) Remove unmatched tracker dets if they fall within a crowd ignore region or don't meet a certain | |
other criteria (e.g. are too small). | |
4) Remove gt dets that were only useful for preprocessing and not for actual evaluation. | |
After the above preprocessing steps, this function also calculates the number of gt and tracker detections | |
and unique track ids. It also relabels gt and tracker ids to be contiguous and checks that ids are | |
unique within each timestep. | |
KITTI: | |
In KITTI, the 4 preproc steps are as follow: | |
1) There are two classes (pedestrian and car) which are evaluated separately. | |
2) For the pedestrian class, the 'person' class is distractor objects (people sitting). | |
For the car class, the 'van' class are distractor objects. | |
GT boxes marked as having occlusion level > 2 or truncation level > 0 are also treated as | |
distractors. | |
3) Crowd ignore regions are used to remove unmatched detections. Also unmatched detections with | |
height <= 25 pixels are removed. | |
4) Distractor gt dets (including truncated and occluded) are removed. | |
""" | |
if cls == 'pedestrian': | |
distractor_classes = [self.class_name_to_class_id['person']] | |
elif cls == 'car': | |
distractor_classes = [self.class_name_to_class_id['van']] | |
else: | |
raise (TrackEvalException('Class %s is not evaluatable' % cls)) | |
cls_id = self.class_name_to_class_id[cls] | |
data_keys = ['gt_ids', 'tracker_ids', 'gt_dets', 'tracker_dets', 'tracker_confidences', 'similarity_scores'] | |
data = {key: [None] * raw_data['num_timesteps'] for key in data_keys} | |
unique_gt_ids = [] | |
unique_tracker_ids = [] | |
num_gt_dets = 0 | |
num_tracker_dets = 0 | |
for t in range(raw_data['num_timesteps']): | |
# Only extract relevant dets for this class for preproc and eval (cls + distractor classes) | |
gt_class_mask = np.sum([raw_data['gt_classes'][t] == c for c in [cls_id] + distractor_classes], axis=0) | |
gt_class_mask = gt_class_mask.astype(np.bool) | |
gt_ids = raw_data['gt_ids'][t][gt_class_mask] | |
gt_dets = raw_data['gt_dets'][t][gt_class_mask] | |
gt_classes = raw_data['gt_classes'][t][gt_class_mask] | |
gt_occlusion = raw_data['gt_extras'][t]['occlusion'][gt_class_mask] | |
gt_truncation = raw_data['gt_extras'][t]['truncation'][gt_class_mask] | |
tracker_class_mask = np.atleast_1d(raw_data['tracker_classes'][t] == cls_id) | |
tracker_class_mask = tracker_class_mask.astype(np.bool) | |
tracker_ids = raw_data['tracker_ids'][t][tracker_class_mask] | |
tracker_dets = raw_data['tracker_dets'][t][tracker_class_mask] | |
tracker_confidences = raw_data['tracker_confidences'][t][tracker_class_mask] | |
similarity_scores = raw_data['similarity_scores'][t][gt_class_mask, :][:, tracker_class_mask] | |
# Match tracker and gt dets (with hungarian algorithm) and remove tracker dets which match with gt dets | |
# which are labeled as truncated, occluded, or belonging to a distractor class. | |
to_remove_matched = np.array([], np.int) | |
unmatched_indices = np.arange(tracker_ids.shape[0]) | |
if gt_ids.shape[0] > 0 and tracker_ids.shape[0] > 0: | |
matching_scores = similarity_scores.copy() | |
matching_scores[matching_scores < 0.5 - np.finfo('float').eps] = 0 | |
match_rows, match_cols = linear_sum_assignment(-matching_scores) | |
actually_matched_mask = matching_scores[match_rows, match_cols] > 0 + np.finfo('float').eps | |
match_rows = match_rows[actually_matched_mask] | |
match_cols = match_cols[actually_matched_mask] | |
is_distractor_class = np.isin(gt_classes[match_rows], distractor_classes) | |
is_occluded_or_truncated = np.logical_or( | |
gt_occlusion[match_rows] > self.max_occlusion + np.finfo('float').eps, | |
gt_truncation[match_rows] > self.max_truncation + np.finfo('float').eps) | |
to_remove_matched = np.logical_or(is_distractor_class, is_occluded_or_truncated) | |
to_remove_matched = match_cols[to_remove_matched] | |
unmatched_indices = np.delete(unmatched_indices, match_cols, axis=0) | |
# For unmatched tracker dets, also remove those smaller than a minimum height. | |
unmatched_tracker_dets = tracker_dets[unmatched_indices, :] | |
unmatched_heights = unmatched_tracker_dets[:, 3] - unmatched_tracker_dets[:, 1] | |
is_too_small = unmatched_heights <= self.min_height + np.finfo('float').eps | |
# For unmatched tracker dets, also remove those that are greater than 50% within a crowd ignore region. | |
crowd_ignore_regions = raw_data['gt_crowd_ignore_regions'][t] | |
intersection_with_ignore_region = self._calculate_box_ious(unmatched_tracker_dets, crowd_ignore_regions, | |
box_format='x0y0x1y1', do_ioa=True) | |
is_within_crowd_ignore_region = np.any(intersection_with_ignore_region > 0.5 + np.finfo('float').eps, axis=1) | |
# Apply preprocessing to remove all unwanted tracker dets. | |
to_remove_unmatched = unmatched_indices[np.logical_or(is_too_small, is_within_crowd_ignore_region)] | |
to_remove_tracker = np.concatenate((to_remove_matched, to_remove_unmatched), axis=0) | |
data['tracker_ids'][t] = np.delete(tracker_ids, to_remove_tracker, axis=0) | |
data['tracker_dets'][t] = np.delete(tracker_dets, to_remove_tracker, axis=0) | |
data['tracker_confidences'][t] = np.delete(tracker_confidences, to_remove_tracker, axis=0) | |
similarity_scores = np.delete(similarity_scores, to_remove_tracker, axis=1) | |
# Also remove gt dets that were only useful for preprocessing and are not needed for evaluation. | |
# These are those that are occluded, truncated and from distractor objects. | |
gt_to_keep_mask = (np.less_equal(gt_occlusion, self.max_occlusion)) & \ | |
(np.less_equal(gt_truncation, self.max_truncation)) & \ | |
(np.equal(gt_classes, cls_id)) | |
data['gt_ids'][t] = gt_ids[gt_to_keep_mask] | |
data['gt_dets'][t] = gt_dets[gt_to_keep_mask, :] | |
data['similarity_scores'][t] = similarity_scores[gt_to_keep_mask] | |
unique_gt_ids += list(np.unique(data['gt_ids'][t])) | |
unique_tracker_ids += list(np.unique(data['tracker_ids'][t])) | |
num_tracker_dets += len(data['tracker_ids'][t]) | |
num_gt_dets += len(data['gt_ids'][t]) | |
# Re-label IDs such that there are no empty IDs | |
if len(unique_gt_ids) > 0: | |
unique_gt_ids = np.unique(unique_gt_ids) | |
gt_id_map = np.nan * np.ones((np.max(unique_gt_ids) + 1)) | |
gt_id_map[unique_gt_ids] = np.arange(len(unique_gt_ids)) | |
for t in range(raw_data['num_timesteps']): | |
if len(data['gt_ids'][t]) > 0: | |
data['gt_ids'][t] = gt_id_map[data['gt_ids'][t]].astype(np.int) | |
if len(unique_tracker_ids) > 0: | |
unique_tracker_ids = np.unique(unique_tracker_ids) | |
tracker_id_map = np.nan * np.ones((np.max(unique_tracker_ids) + 1)) | |
tracker_id_map[unique_tracker_ids] = np.arange(len(unique_tracker_ids)) | |
for t in range(raw_data['num_timesteps']): | |
if len(data['tracker_ids'][t]) > 0: | |
data['tracker_ids'][t] = tracker_id_map[data['tracker_ids'][t]].astype(np.int) | |
# Record overview statistics. | |
data['num_tracker_dets'] = num_tracker_dets | |
data['num_gt_dets'] = num_gt_dets | |
data['num_tracker_ids'] = len(unique_tracker_ids) | |
data['num_gt_ids'] = len(unique_gt_ids) | |
data['num_timesteps'] = raw_data['num_timesteps'] | |
data['seq'] = raw_data['seq'] | |
# Ensure that ids are unique per timestep. | |
self._check_unique_ids(data) | |
return data | |
def _calculate_similarities(self, gt_dets_t, tracker_dets_t): | |
similarity_scores = self._calculate_box_ious(gt_dets_t, tracker_dets_t, box_format='x0y0x1y1') | |
return similarity_scores | |