Spaces:
Sleeping
Sleeping
Cell Segmentation
Training
The data structure used to train cell segmentation networks is different than to train classification networks on WSI/Patient level. Cureently, due to the massive amount of cells inside a WSI, all famous cell segmentation datasets (such like PanNuke, https://doi.org/10.48550/arXiv.2003.10778) provide just patches with cell annotations. Therefore, we use the following dataset structure (with k folds):
dataset
βββ dataset_config.yaml
βββ fold0
β βββ images
| | βββ 0_imgname0.png
| | βββ 0_imgname1.png
| | βββ 0_imgname2.png
...
| | βββ 0_imgnameN.png
β βββ labels
| | βββ 0_imgname0.npy
| | βββ 0_imgname1.npy
| | βββ 0_imgname2.npy
...
| | βββ 0_imgnameN.npy
| βββ types.csv
βββ fold1
β βββ images
| | βββ 1_imgname0.png
| | βββ 1_imgname1.png
...
β βββ labels
| | βββ 1_imgname0.npy
| | βββ 1_imgname1.npy
...
| βββ types.csv
...
βββ foldk
β βββ images
| βββ k_imgname0.png
| βββ k_imgname1.png
...
βββ labels
| βββ k_imgname0.npy
| βββ k_imgname1.npy
βββ types.csv
Each type csv should have the following header:
img,type # Header
foldnum_imgname0.png,SetTypeHeare # Each row is one patch with tissue type
The labels are numpy masks with the following structure: TBD
Add a new dataset
add to dataset coordnator.
All settings of the dataset must be performed in the correspondinng yaml file, under the data section
dataset name is not case sensitive!