Spaces:
Runtime error
Runtime error
import gradio as gr | |
from matplotlib import gridspec | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from torch import nn | |
from PIL import Image | |
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation | |
feature_extractor = SegformerFeatureExtractor.from_pretrained("zoheb/mit-b5-finetuned-sidewalk-semantic") | |
model = SegformerForSemanticSegmentation.from_pretrained("zoheb/mit-b5-finetuned-sidewalk-semantic") | |
def sidewalk_palette(): | |
"""Sidewalk palette that maps each class to RGB values.""" | |
return [ | |
[0, 0, 0], | |
[216, 82, 24], | |
[255, 255, 0], | |
[125, 46, 141], | |
[118, 171, 47], | |
[161, 19, 46], | |
[255, 0, 0], | |
[0, 128, 128], | |
[190, 190, 0], | |
[0, 255, 0], | |
[0, 0, 255], | |
[170, 0, 255], | |
[84, 84, 0], | |
[84, 170, 0], | |
[84, 255, 0], | |
[170, 84, 0], | |
[170, 170, 0], | |
[170, 255, 0], | |
[255, 84, 0], | |
[255, 170, 0], | |
[255, 255, 0], | |
[33, 138, 200], | |
[0, 170, 127], | |
[0, 255, 127], | |
[84, 0, 127], | |
[84, 84, 127], | |
[84, 170, 127], | |
[84, 255, 127], | |
[170, 0, 127], | |
[170, 84, 127], | |
[170, 170, 127], | |
[170, 255, 127], | |
[255, 0, 127], | |
[255, 84, 127], | |
[255, 170, 127], | |
] | |
labels_list = [] | |
with open(r'labels.txt', 'r') as fp: | |
labels_list.extend(line[:-1] for line in fp) | |
colormap = np.asarray(sidewalk_palette()) | |
def label_to_color_image(label): | |
if label.ndim != 2: | |
raise ValueError("Expect 2-D input label") | |
if np.max(label) >= len(colormap): | |
raise ValueError("label value too large.") | |
return colormap[label] | |
def draw_plot(pred_img, seg): | |
fig = plt.figure(figsize=(20, 15)) | |
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1]) | |
plt.subplot(grid_spec[0]) | |
plt.imshow(pred_img) | |
plt.axis('off') | |
LABEL_NAMES = np.asarray(labels_list) | |
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1) | |
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP) | |
unique_labels = np.unique(seg.numpy().astype("uint8")) | |
ax = plt.subplot(grid_spec[1]) | |
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest") | |
ax.yaxis.tick_right() | |
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels]) | |
plt.xticks([], []) | |
ax.tick_params(width=0.0, labelsize=25) | |
return fig | |
def main(input_img): | |
input_img = Image.fromarray(input_img) | |
inputs = feature_extractor(images=input_img, return_tensors="pt") | |
outputs = model(**inputs) | |
logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4) | |
# First, rescale logits to original image size | |
upsampled_logits = nn.functional.interpolate( | |
logits, | |
size=input_img.size[::-1], # (height, width) | |
mode='bilinear', | |
align_corners=False | |
) | |
# Second, apply argmax on the class dimension | |
pred_seg = upsampled_logits.argmax(dim=1)[0] | |
color_seg = np.zeros((pred_seg.shape[0], pred_seg.shape[1], 3), dtype=np.uint8) # height, width, 3 | |
palette = np.array(sidewalk_palette()) | |
for label, color in enumerate(palette): | |
color_seg[pred_seg == label, :] = color | |
# Show image + mask | |
img = np.array(input_img) * 0.5 + color_seg * 0.5 | |
pred_img = img.astype(np.uint8) | |
return draw_plot(pred_img, pred_seg) | |
demo = gr.Interface(main, | |
gr.Image(shape=(200, 200)), | |
outputs=['plot'], | |
examples=["test.jpg"], | |
allow_flagging='never') | |
demo.launch() | |