|
--- |
|
license: apache-2.0 |
|
base_model: google/vit-base-patch16-224-in21k |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: srikrishnateja/vit-base-patch16-224-in21k-euroSat |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# srikrishnateja/vit-base-patch16-224-in21k-euroSat |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.0403 |
|
- Train Accuracy: 0.9952 |
|
- Train Top-3-accuracy: 1.0 |
|
- Validation Loss: 0.1351 |
|
- Validation Accuracy: 0.9645 |
|
- Validation Top-3-accuracy: 1.0 |
|
- Epoch: 4 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'inner_optimizer': {'module': 'transformers.optimization_tf', 'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 425, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.8999999761581421, 'beta_2': 0.9990000128746033, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}, 'registered_name': 'AdamWeightDecay'}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} |
|
- training_precision: mixed_float16 |
|
|
|
### Training results |
|
|
|
| Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |
|
|:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| |
|
| 0.4326 | 0.8143 | 1.0 | 0.2613 | 0.9102 | 1.0 | 0 | |
|
| 0.1770 | 0.9413 | 1.0 | 0.1919 | 0.9332 | 1.0 | 1 | |
|
| 0.0943 | 0.9760 | 1.0 | 0.1654 | 0.9436 | 1.0 | 2 | |
|
| 0.0576 | 0.9863 | 1.0 | 0.1457 | 0.9520 | 1.0 | 3 | |
|
| 0.0403 | 0.9952 | 1.0 | 0.1351 | 0.9645 | 1.0 | 4 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.1 |
|
- TensorFlow 2.15.0 |
|
- Datasets 2.17.1 |
|
- Tokenizers 0.15.1 |
|
|