|
--- |
|
license: cc-by-nc-sa-4.0 |
|
base_model: ufal/robeczech-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- cnec |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: CNEC_1_1_robeczech-base |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: cnec |
|
type: cnec |
|
config: default |
|
split: validation |
|
args: default |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8354960234407702 |
|
- name: Recall |
|
type: recall |
|
value: 0.8812362030905078 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8577567683712936 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9450064850843061 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# CNEC_1_1_robeczech-base |
|
|
|
This model is a fine-tuned version of [ufal/robeczech-base](https://huggingface.co/ufal/robeczech-base) on the cnec dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2816 |
|
- Precision: 0.8355 |
|
- Recall: 0.8812 |
|
- F1: 0.8578 |
|
- Accuracy: 0.9450 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 80 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.7852 | 10.2 | 1500 | 0.6287 | 0.3577 | 0.2375 | 0.2855 | 0.8413 | |
|
| 0.3806 | 20.41 | 3000 | 0.3455 | 0.7275 | 0.7779 | 0.7519 | 0.9240 | |
|
| 0.2384 | 30.61 | 4500 | 0.2764 | 0.8139 | 0.8552 | 0.8340 | 0.9383 | |
|
| 0.1722 | 40.82 | 6000 | 0.2640 | 0.8361 | 0.8693 | 0.8524 | 0.9450 | |
|
| 0.1357 | 51.02 | 7500 | 0.2666 | 0.8362 | 0.8702 | 0.8529 | 0.9454 | |
|
| 0.1115 | 61.22 | 9000 | 0.2697 | 0.8423 | 0.8751 | 0.8584 | 0.9457 | |
|
| 0.098 | 71.43 | 10500 | 0.2816 | 0.8355 | 0.8812 | 0.8578 | 0.9450 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.2 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |
|
|