|
--- |
|
base_model: microsoft/deberta-v3-base |
|
datasets: |
|
- nyu-mll/glue |
|
- aps/super_glue |
|
- facebook/anli |
|
- tasksource/babi_nli |
|
- sick |
|
- snli |
|
- scitail |
|
- hans |
|
- alisawuffles/WANLI |
|
- tasksource/recast |
|
- sileod/probability_words_nli |
|
- joey234/nan-nli |
|
- pietrolesci/nli_fever |
|
- pietrolesci/breaking_nli |
|
- pietrolesci/conj_nli |
|
- pietrolesci/fracas |
|
- pietrolesci/dialogue_nli |
|
- pietrolesci/mpe |
|
- pietrolesci/dnc |
|
- pietrolesci/recast_white |
|
- pietrolesci/joci |
|
- pietrolesci/robust_nli |
|
- pietrolesci/robust_nli_is_sd |
|
- pietrolesci/robust_nli_li_ts |
|
- pietrolesci/gen_debiased_nli |
|
- pietrolesci/add_one_rte |
|
- tasksource/imppres |
|
- hlgd |
|
- paws |
|
- medical_questions_pairs |
|
- Anthropic/model-written-evals |
|
- truthful_qa |
|
- nightingal3/fig-qa |
|
- tasksource/bigbench |
|
- blimp |
|
- cos_e |
|
- cosmos_qa |
|
- dream |
|
- openbookqa |
|
- qasc |
|
- quartz |
|
- quail |
|
- head_qa |
|
- sciq |
|
- social_i_qa |
|
- wiki_hop |
|
- wiqa |
|
- piqa |
|
- hellaswag |
|
- pkavumba/balanced-copa |
|
- 12ml/e-CARE |
|
- art |
|
- winogrande |
|
- codah |
|
- ai2_arc |
|
- definite_pronoun_resolution |
|
- swag |
|
- math_qa |
|
- metaeval/utilitarianism |
|
- mteb/amazon_counterfactual |
|
- SetFit/insincere-questions |
|
- SetFit/toxic_conversations |
|
- turingbench/TuringBench |
|
- trec |
|
- tals/vitaminc |
|
- hope_edi |
|
- strombergnlp/rumoureval_2019 |
|
- ethos |
|
- tweet_eval |
|
- discovery |
|
- pragmeval |
|
- silicone |
|
- lex_glue |
|
- papluca/language-identification |
|
- imdb |
|
- rotten_tomatoes |
|
- ag_news |
|
- yelp_review_full |
|
- financial_phrasebank |
|
- poem_sentiment |
|
- dbpedia_14 |
|
- amazon_polarity |
|
- app_reviews |
|
- hate_speech18 |
|
- sms_spam |
|
- humicroedit |
|
- snips_built_in_intents |
|
- hate_speech_offensive |
|
- yahoo_answers_topics |
|
- pacovaldez/stackoverflow-questions |
|
- zapsdcn/hyperpartisan_news |
|
- zapsdcn/sciie |
|
- zapsdcn/citation_intent |
|
- go_emotions |
|
- allenai/scicite |
|
- liar |
|
- relbert/lexical_relation_classification |
|
- tasksource/linguisticprobing |
|
- tasksource/crowdflower |
|
- metaeval/ethics |
|
- emo |
|
- google_wellformed_query |
|
- tweets_hate_speech_detection |
|
- has_part |
|
- blog_authorship_corpus |
|
- launch/open_question_type |
|
- health_fact |
|
- commonsense_qa |
|
- mc_taco |
|
- ade_corpus_v2 |
|
- prajjwal1/discosense |
|
- circa |
|
- PiC/phrase_similarity |
|
- copenlu/scientific-exaggeration-detection |
|
- quarel |
|
- mwong/fever-evidence-related |
|
- numer_sense |
|
- dynabench/dynasent |
|
- raquiba/Sarcasm_News_Headline |
|
- sem_eval_2010_task_8 |
|
- demo-org/auditor_review |
|
- medmcqa |
|
- RuyuanWan/Dynasent_Disagreement |
|
- RuyuanWan/Politeness_Disagreement |
|
- RuyuanWan/SBIC_Disagreement |
|
- RuyuanWan/SChem_Disagreement |
|
- RuyuanWan/Dilemmas_Disagreement |
|
- lucasmccabe/logiqa |
|
- wiki_qa |
|
- tasksource/cycic_classification |
|
- tasksource/cycic_multiplechoice |
|
- tasksource/sts-companion |
|
- tasksource/commonsense_qa_2.0 |
|
- tasksource/lingnli |
|
- tasksource/monotonicity-entailment |
|
- tasksource/arct |
|
- tasksource/scinli |
|
- tasksource/naturallogic |
|
- onestop_qa |
|
- demelin/moral_stories |
|
- corypaik/prost |
|
- aps/dynahate |
|
- metaeval/syntactic-augmentation-nli |
|
- tasksource/autotnli |
|
- lasha-nlp/CONDAQA |
|
- openai/webgpt_comparisons |
|
- Dahoas/synthetic-instruct-gptj-pairwise |
|
- metaeval/scruples |
|
- metaeval/wouldyourather |
|
- metaeval/defeasible-nli |
|
- tasksource/help-nli |
|
- metaeval/nli-veridicality-transitivity |
|
- tasksource/lonli |
|
- tasksource/dadc-limit-nli |
|
- ColumbiaNLP/FLUTE |
|
- tasksource/strategy-qa |
|
- openai/summarize_from_feedback |
|
- tasksource/folio |
|
- yale-nlp/FOLIO |
|
- tasksource/tomi-nli |
|
- tasksource/avicenna |
|
- stanfordnlp/SHP |
|
- GBaker/MedQA-USMLE-4-options-hf |
|
- sileod/wikimedqa |
|
- declare-lab/cicero |
|
- amydeng2000/CREAK |
|
- tasksource/mutual |
|
- inverse-scaling/NeQA |
|
- inverse-scaling/quote-repetition |
|
- inverse-scaling/redefine-math |
|
- tasksource/puzzte |
|
- tasksource/implicatures |
|
- race |
|
- tasksource/race-c |
|
- tasksource/spartqa-yn |
|
- tasksource/spartqa-mchoice |
|
- tasksource/temporal-nli |
|
- riddle_sense |
|
- tasksource/clcd-english |
|
- maximedb/twentyquestions |
|
- metaeval/reclor |
|
- tasksource/counterfactually-augmented-imdb |
|
- tasksource/counterfactually-augmented-snli |
|
- metaeval/cnli |
|
- tasksource/boolq-natural-perturbations |
|
- metaeval/acceptability-prediction |
|
- metaeval/equate |
|
- tasksource/ScienceQA_text_only |
|
- Jiangjie/ekar_english |
|
- tasksource/implicit-hate-stg1 |
|
- metaeval/chaos-mnli-ambiguity |
|
- IlyaGusev/headline_cause |
|
- tasksource/logiqa-2.0-nli |
|
- tasksource/oasst2_dense_flat |
|
- sileod/mindgames |
|
- metaeval/ambient |
|
- metaeval/path-naturalness-prediction |
|
- civil_comments |
|
- AndyChiang/cloth |
|
- AndyChiang/dgen |
|
- tasksource/I2D2 |
|
- webis/args_me |
|
- webis/Touche23-ValueEval |
|
- tasksource/starcon |
|
- PolyAI/banking77 |
|
- tasksource/ConTRoL-nli |
|
- tasksource/tracie |
|
- tasksource/sherliic |
|
- tasksource/sen-making |
|
- tasksource/winowhy |
|
- tasksource/robustLR |
|
- CLUTRR/v1 |
|
- tasksource/logical-fallacy |
|
- tasksource/parade |
|
- tasksource/cladder |
|
- tasksource/subjectivity |
|
- tasksource/MOH |
|
- tasksource/VUAC |
|
- tasksource/TroFi |
|
- sharc_modified |
|
- tasksource/conceptrules_v2 |
|
- metaeval/disrpt |
|
- tasksource/zero-shot-label-nli |
|
- tasksource/com2sense |
|
- tasksource/scone |
|
- tasksource/winodict |
|
- tasksource/fool-me-twice |
|
- tasksource/monli |
|
- tasksource/corr2cause |
|
- lighteval/lsat_qa |
|
- tasksource/apt |
|
- zeroshot/twitter-financial-news-sentiment |
|
- tasksource/icl-symbol-tuning-instruct |
|
- tasksource/SpaceNLI |
|
- sihaochen/propsegment |
|
- HannahRoseKirk/HatemojiBuild |
|
- tasksource/regset |
|
- tasksource/esci |
|
- lmsys/chatbot_arena_conversations |
|
- neurae/dnd_style_intents |
|
- hitachi-nlp/FLD.v2 |
|
- tasksource/SDOH-NLI |
|
- allenai/scifact_entailment |
|
- tasksource/feasibilityQA |
|
- tasksource/simple_pair |
|
- tasksource/AdjectiveScaleProbe-nli |
|
- tasksource/resnli |
|
- tasksource/SpaRTUN |
|
- tasksource/ReSQ |
|
- tasksource/semantic_fragments_nli |
|
- MoritzLaurer/dataset_train_nli |
|
- tasksource/stepgame |
|
- tasksource/nlgraph |
|
- tasksource/oasst2_pairwise_rlhf_reward |
|
- tasksource/hh-rlhf |
|
- tasksource/ruletaker |
|
- qbao775/PARARULE-Plus |
|
- tasksource/proofwriter |
|
- tasksource/logical-entailment |
|
- tasksource/nope |
|
- tasksource/LogicNLI |
|
- kiddothe2b/contract-nli |
|
- AshtonIsNotHere/nli4ct_semeval2024 |
|
- tasksource/lsat-ar |
|
- tasksource/lsat-rc |
|
- AshtonIsNotHere/biosift-nli |
|
- tasksource/brainteasers |
|
- Anthropic/persuasion |
|
- erbacher/AmbigNQ-clarifying-question |
|
- tasksource/SIGA-nli |
|
- unigram/FOL-nli |
|
- tasksource/goal-step-wikihow |
|
- GGLab/PARADISE |
|
- tasksource/doc-nli |
|
- tasksource/mctest-nli |
|
- tasksource/patent-phrase-similarity |
|
- tasksource/natural-language-satisfiability |
|
- tasksource/idioms-nli |
|
- tasksource/lifecycle-entailment |
|
- nvidia/HelpSteer |
|
- nvidia/HelpSteer2 |
|
- sadat2307/MSciNLI |
|
- pushpdeep/UltraFeedback-paired |
|
- tasksource/AES2-essay-scoring |
|
- tasksource/english-grading |
|
- tasksource/wice |
|
- Dzeniks/hover |
|
- tasksource/tasksource_dpo_pairs |
|
library_name: transformers |
|
pipeline_tag: zero-shot-classification |
|
tags: |
|
- text-classification |
|
- zero-shot-classification |
|
license: apache-2.0 |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
deberta-v3-base with context length of 1280 fine-tuned on tasksource for 250k steps. I oversampled long NLI tasks (ConTRoL, doc-nli). |
|
Training data include helpsteer v1/v2, logical reasoning tasks (FOLIO, FOL-nli, LogicNLI...), OASST, hh/rlhf, linguistics oriented NLI tasks, tasksource-dpo, fact verification tasks. |
|
|
|
This checkpoint has strong zero-shot validation performance on many tasks (e.g. 70% on WNLI), and can be used for: |
|
- Zero-shot entailment-based classification for arbitrary labels [ZS]. |
|
- Natural language inference [NLI] |
|
- Further fine-tuning on a new task or tasksource task (classification, token classification, reward modeling or multiple-choice) [FT]. |
|
|
|
| dataset | accuracy | |
|
|:----------------------------|----------------:| |
|
| anli/a1 | 63.3 | |
|
| anli/a2 | 47.2 | |
|
| anli/a3 | 49.4 | |
|
| nli_fever | 79.4 | |
|
| FOLIO | 61.8 | |
|
| ConTRoL-nli | 63.3 | |
|
| cladder | 71.1 | |
|
| zero-shot-label-nli | 74.4 | |
|
| chatbot_arena_conversations | 72.2 | |
|
| oasst2_pairwise_rlhf_reward | 73.9 | |
|
| doc-nli | 90.0 | |
|
|
|
Zero-shot GPT-4 scores 61% on FOLIO (logical reasoning), 62% on cladder (probabilistic reasoning) and 56.4% on ConTRoL (long context NLI). |
|
|
|
# [ZS] Zero-shot classification pipeline |
|
```python |
|
from transformers import pipeline |
|
classifier = pipeline("zero-shot-classification",model="tasksource/deberta-base-long-nli") |
|
|
|
text = "one day I will see the world" |
|
candidate_labels = ['travel', 'cooking', 'dancing'] |
|
classifier(text, candidate_labels) |
|
``` |
|
NLI training data of this model includes [label-nli](https://huggingface.co/datasets/tasksource/zero-shot-label-nli), a NLI dataset specially constructed to improve this kind of zero-shot classification. |
|
|
|
# [NLI] Natural language inference pipeline |
|
|
|
```python |
|
from transformers import pipeline |
|
pipe = pipeline("text-classification",model="tasksource/deberta-base-long-nli") |
|
pipe([dict(text='there is a cat', |
|
text_pair='there is a black cat')]) #list of (premise,hypothesis) |
|
# [{'label': 'neutral', 'score': 0.9952911138534546}] |
|
``` |
|
|
|
# [TA] Tasksource-adapters: 1 line access to hundreds of tasks |
|
|
|
```python |
|
# !pip install tasknet |
|
import tasknet as tn |
|
pipe = tn.load_pipeline('tasksource/deberta-base-long-nli','glue/sst2') # works for 500+ tasksource tasks |
|
pipe(['That movie was great !', 'Awful movie.']) |
|
# [{'label': 'positive', 'score': 0.9956}, {'label': 'negative', 'score': 0.9967}] |
|
``` |
|
The list of tasks is available in model config.json. |
|
This is more efficient than ZS since it requires only one forward pass per example, but it is less flexible. |
|
|
|
|
|
# [FT] Tasknet: 3 lines fine-tuning |
|
|
|
```python |
|
# !pip install tasknet |
|
import tasknet as tn |
|
hparams=dict(model_name='tasksource/deberta-base-long-nli', learning_rate=2e-5) |
|
model, trainer = tn.Model_Trainer([tn.AutoTask("glue/rte")], hparams) |
|
trainer.train() |
|
``` |
|
|
|
|
|
# Citation |
|
|
|
More details on this [article:](https://aclanthology.org/2024.lrec-main.1361/) |
|
``` |
|
@inproceedings{sileo-2024-tasksource, |
|
title = "tasksource: A Large Collection of {NLP} tasks with a Structured Dataset Preprocessing Framework", |
|
author = "Sileo, Damien", |
|
editor = "Calzolari, Nicoletta and |
|
Kan, Min-Yen and |
|
Hoste, Veronique and |
|
Lenci, Alessandro and |
|
Sakti, Sakriani and |
|
Xue, Nianwen", |
|
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)", |
|
month = may, |
|
year = "2024", |
|
address = "Torino, Italia", |
|
publisher = "ELRA and ICCL", |
|
url = "https://aclanthology.org/2024.lrec-main.1361", |
|
pages = "15655--15684", |
|
} |
|
``` |
|
|