Sailor-1.8B-GGUF / README.md
morriszms's picture
Upload folder using huggingface_hub
a953612 verified
|
raw
history blame
7.14 kB
metadata
language:
  - en
  - zh
  - id
  - th
  - vi
  - ms
  - lo
datasets:
  - cerebras/SlimPajama-627B
  - Skywork/SkyPile-150B
  - allenai/MADLAD-400
  - cc100
tags:
  - multilingual
  - sea
  - sailor
  - TensorBlock
  - GGUF
license: apache-2.0
base_model: sail/Sailor-1.8B
inference: false
model-index:
  - name: Sailor-1.8B
    results:
      - task:
          type: text-generation
        dataset:
          name: XQuAD-Thai
          type: XQuAD-Thai
        metrics:
          - type: EM (3-Shot)
            value: 32.72
            name: EM (3-Shot)
          - type: F1 (3-Shot)
            value: 48.66
            name: F1 (3-Shot)
      - task:
          type: text-generation
        dataset:
          name: TyDiQA-Indonesian
          type: TyDiQA-Indonesian
        metrics:
          - type: EM (3-Shot)
            value: 40.88
            name: EM (3-Shot)
          - type: F1 (3-Shot)
            value: 65.37
            name: F1 (3-Shot)
      - task:
          type: text-generation
        dataset:
          name: XQuAD-Vietnamese
          type: XQuAD-Vietnamese
        metrics:
          - type: EM (3-Shot)
            value: 34.22
            name: EM (3-Shot)
          - type: F1 (3-Shot)
            value: 53.35
            name: F1 (3-Shot)
      - task:
          type: text-generation
        dataset:
          name: XCOPA-Thai
          type: XCOPA-Thai
        metrics:
          - type: EM (3-Shot)
            value: 53.8
            name: EM (3-Shot)
      - task:
          type: text-generation
        dataset:
          name: XCOPA-Indonesian
          type: XCOPA-Indonesian
        metrics:
          - type: EM (3-Shot)
            value: 64.2
            name: EM (3-Shot)
      - task:
          type: text-generation
        dataset:
          name: XCOPA-Vietnamese
          type: XCOPA-Vietnamese
        metrics:
          - type: EM (3-Shot)
            value: 63.2
            name: EM (3-Shot)
      - task:
          type: text-generation
        dataset:
          name: M3Exam-Thai
          type: M3Exam-Thai
        metrics:
          - type: EM (3-Shot)
            value: 25.38
            name: EM (3-Shot)
      - task:
          type: text-generation
        dataset:
          name: M3Exam-Indonesian
          type: M3Exam-Indonesian
        metrics:
          - type: EM (3-Shot)
            value: 28.3
            name: EM (3-Shot)
      - task:
          type: text-generation
        dataset:
          name: M3Exam-Vietnamese
          type: M3Exam-Vietnamese
        metrics:
          - type: EM (3-Shot)
            value: 34.71
            name: EM (3-Shot)
      - task:
          type: text-generation
        dataset:
          name: BELEBELE-Thai
          type: BELEBELE-Thai
        metrics:
          - type: EM (3-Shot)
            value: 34.22
            name: EM (3-Shot)
      - task:
          type: text-generation
        dataset:
          name: BELEBELE-Indonesian
          type: BELEBELE-Indonesian
        metrics:
          - type: EM (3-Shot)
            value: 34.89
            name: EM (3-Shot)
      - task:
          type: text-generation
        dataset:
          name: BELEBELE-Vietnamese
          type: BELEBELE-Vietnamese
        metrics:
          - type: EM (3-Shot)
            value: 35.33
            name: EM (3-Shot)
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

sail/Sailor-1.8B - GGUF

This repo contains GGUF format model files for sail/Sailor-1.8B.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.

Prompt template

<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant

Model file specification

Filename Quant type File Size Description
Sailor-1.8B-Q2_K.gguf Q2_K 0.847 GB smallest, significant quality loss - not recommended for most purposes
Sailor-1.8B-Q3_K_S.gguf Q3_K_S 0.954 GB very small, high quality loss
Sailor-1.8B-Q3_K_M.gguf Q3_K_M 1.016 GB very small, high quality loss
Sailor-1.8B-Q3_K_L.gguf Q3_K_L 1.056 GB small, substantial quality loss
Sailor-1.8B-Q4_0.gguf Q4_0 1.120 GB legacy; small, very high quality loss - prefer using Q3_K_M
Sailor-1.8B-Q4_K_S.gguf Q4_K_S 1.158 GB small, greater quality loss
Sailor-1.8B-Q4_K_M.gguf Q4_K_M 1.218 GB medium, balanced quality - recommended
Sailor-1.8B-Q5_0.gguf Q5_0 1.311 GB legacy; medium, balanced quality - prefer using Q4_K_M
Sailor-1.8B-Q5_K_S.gguf Q5_K_S 1.328 GB large, low quality loss - recommended
Sailor-1.8B-Q5_K_M.gguf Q5_K_M 1.377 GB large, very low quality loss - recommended
Sailor-1.8B-Q6_K.gguf Q6_K 1.579 GB very large, extremely low quality loss
Sailor-1.8B-Q8_0.gguf Q8_0 1.958 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/Sailor-1.8B-GGUF --include "Sailor-1.8B-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/Sailor-1.8B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'