metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilbert-organization-matching
results: []
distilbert-organization-matching
This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1927
- Accuracy: 0.9673
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.1937 | 1.0 | 520 | 0.1080 | 0.9639 |
0.1146 | 2.0 | 1040 | 0.1178 | 0.9652 |
0.0755 | 3.0 | 1560 | 0.1006 | 0.9680 |
0.0596 | 4.0 | 2080 | 0.1478 | 0.9673 |
0.0432 | 5.0 | 2600 | 0.1439 | 0.9707 |
0.0263 | 6.0 | 3120 | 0.1564 | 0.9693 |
0.0242 | 7.0 | 3640 | 0.1945 | 0.9659 |
0.0191 | 8.0 | 4160 | 0.1827 | 0.9673 |
0.0118 | 9.0 | 4680 | 0.1863 | 0.9686 |
0.0076 | 10.0 | 5200 | 0.1927 | 0.9673 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.14.7
- Tokenizers 0.15.0