|
--- |
|
base_model: llm-jp/llm-jp-3-13b |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
- unsloth |
|
- llama |
|
- trl |
|
license: cc |
|
language: |
|
- en |
|
datasets: |
|
- weblab-GENIAC/aya-ja-nemotron-dpo-masked |
|
--- |
|
|
|
# Uploaded model |
|
|
|
- **Developed by:** thesugar |
|
- **License:** CC-BY-NC-SA |
|
- **Finetuned from model :** llm-jp/llm-jp-3-13b |
|
|
|
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. |
|
|
|
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |
|
|
|
# HOW TO INFERENCE for competition evaluators |
|
|
|
Google Colab L4 で実行 |
|
|
|
```ipynb |
|
!pip install unsloth |
|
!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir --no-deps git+https://github.com/unslothai/unsloth.git |
|
|
|
HF_TOKEN = # WRITE YOUR HF_TOKEN |
|
ELYZA_TASKS_100_TV_JSONL_PATH = # WRITE |
|
# Output for elyza-tasks-100-tv is saved as "output.jsonl" |
|
|
|
|
|
from huggingface_hub import login |
|
login(HF_TOKEN) |
|
|
|
from unsloth import FastLanguageModel |
|
import torch |
|
|
|
max_seq_length = 2048 |
|
dtype = torch.bfloat16 |
|
load_in_4bit = True |
|
model, tokenizer = FastLanguageModel.from_pretrained( |
|
model_name = "thesugar/llm-jp-3-13b-it_lora-DPO-12-16", |
|
max_seq_length = max_seq_length, |
|
dtype = dtype, |
|
load_in_4bit = load_in_4bit, |
|
token = HF_TOKEN, |
|
) |
|
|
|
import json |
|
datasets = [] |
|
with open(ELYZA_TASKS_100_TV_JSONL_PATH, "r") as f: |
|
item = "" |
|
for line in f: |
|
line = line.strip() |
|
item += line |
|
if item.endswith("}"): |
|
datasets.append(json.loads(item)) |
|
item = "" |
|
|
|
from tqdm import tqdm |
|
|
|
FastLanguageModel.for_inference(model) |
|
|
|
results = [] |
|
for dt in tqdm(datasets): |
|
input = dt["input"] |
|
|
|
prompt = f"""### 指示\n{input}\n### 回答\n""" |
|
|
|
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device) |
|
|
|
outputs = model.generate(**inputs, max_new_tokens = 2048, use_cache = True, do_sample=False, repetition_penalty=1.2) |
|
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1] |
|
|
|
results.append({"task_id": dt["task_id"], "input": input, "output": prediction}) |
|
|
|
with open("output.jsonl", "w") as f: |
|
for r in results: |
|
f.write(json.dumps(r, ensure_ascii=False) + "\n") |
|
``` |
|
|
|
# Development steps |
|
- `llm-jp/llm-jp-3-13b` を量子化 |
|
- インストラクションチューニング |
|
- `ichikara-instruction` データセットの `ichikara-instruction-003-001-1.json` の全データを使用 |
|
- direct policy optimization |
|
- `weblab-GENIAC/aya-ja-nemotron-dpo-masked` からランダムに選択した 100 レコードを使用 |
|
|
|
# Used datasets and their licenses |
|
## ichikara-instruction: LLMのための日本語インストラクションデータ |
|
- [LLMのための日本語インストラクションデータ 公開ページ – LIAT-AIP homepage](https://liat-aip.sakura.ne.jp/wp/llm%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AE%E6%97%A5%E6%9C%AC%E8%AA%9E%E3%82%A4%E3%83%B3%E3%82%B9%E3%83%88%E3%83%A9%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B3%E3%83%87%E3%83%BC%E3%82%BF%E4%BD%9C%E6%88%90/) |
|
|
|
関根聡, 安藤まや, 後藤美知子, 鈴木久美, 河原大輔, 井之上直也, 乾健太郎. ichikara-instruction: LLMのための日本語インストラクションデータの構築. 言語処理学会第30回年次大会(2024) |
|
CC-BY-NC-SA |
|
|
|
## weblab-GENIAC/aya-ja-nemotron-dpo-masked |
|
- [creator](https://huggingface.co/weblab-GENIAC) |
|
- [repository](https://huggingface.co/datasets/weblab-GENIAC/aya-ja-nemotron-dpo-masked) |
|
|
|
weblab-GENIAC |
|
weblab-GENIAC/aya-ja-nemotron-dpo-masked |
|
Apache License 2.0 |