Falcon3-7B-Base / README.md
melaseddik's picture
Update README.md
bad033a verified
|
raw
history blame
6.23 kB
metadata
language:
  - en
tags:
  - falcon3

Table of Contents

  1. TL;DR
  2. Model Details
  3. Usage
  4. Training Details
  5. Evaluation

TL;DR

Model Details

Model Description

  • Developed by: https://www.tii.ae
  • Model type: Causal decoder-only
  • Architecture: Transformer-base
  • Language(s) (NLP): Mainly English
  • License: TII Falcon-LLM License 2.0

Usage

Find below some example scripts on how to use the model in transformers (Make sure to have the latest transformers, or the one built from source):

Using the Pytorch model with 🤗 transformers

Running the model on a CPU

Click to expand
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon3-7B-Base")
model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon3-7B-Base")

input_text = "Question: How many hours in one day? Answer: "
input_ids = tokenizer(input_text, return_tensors="pt").input_ids

outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))

Running the model on a GPU

Click to expand
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon3-7B-Base")
model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon3-7B-Base", device_map="auto")

input_text = "Question: How many hours in one day? Answer: "
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")

outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))

Running the model on a GPU using torch.compile

Click to expand
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon3-7B-Base")
model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon3-7B-Base", torch_dtype=torch.bfloat16).to(0)

model = torch.compile(model)

input_text = "Question: How many hours in one day? Answer: "
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")

outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))

Training Details

Training Data

Training Procedure

Training Hyperparameters

Hyperparameter Value Comment
Precision bfloat16
Optimizer AdamW
Max learning rate Following a WSD (warmup-stable-decay) learning rate schedule
Weight decay
Batch size

Evaluation

Metrics Llama3.1-8B Falcon3-7B-Base
MUSR Row 1, Cell 2 18.70
BBH Row 2, Cell 2 32.68
MMLU_PRO Row 2, Cell 2 32.43
IF_EVAL Row 2, Cell 2 34.27
GPQA Row 2, Cell 2 13.97
MATH Row 2, Cell 2 18.02
AVG Row 2, Cell 2 24.85
Category Benchmark Llama3.1-8B Qwen2-7B Qwen2.5-7B falcon{7}{Base} Gemma2-9B Yi1.5-9B Mistral-NeMo-12B falcon{10}{Base}
General MMLU (5-shot) 65.2 70.4 74.2 67.5 0 69.6 68.8 73.1
MMLU-PRO (5-shot) 32.7 42.1 43.5 39.2 0 39.3 34.7 42.5
IFEval 12.0 30.6 33.9 34.3 0 29.1 16.1 36.4

Citation