metadata
license: apache-2.0
library_name: timm
tags:
- image-classification
- timm
datasets:
- imagenet-1k
- imagenet-21k
Model card for resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k_384
A ResNet-V2-BiT (Big Transfer w/ pre-activation ResNet) image classification model. Pretrained on ImageNet-21k and fine-tuned on ImageNet-1k by paper authors.
This model uses:
- Group Normalization (GN) in combination with Weight Standardization (WS) instead of Batch Normalization (BN)..
Model Details
- Model Type: Image classification / feature backbone
- Model Stats:
- Params (M): 236.3
- GMACs: 136.2
- Activations (M): 132.6
- Image size: 384 x 384
- Papers:
- Knowledge distillation: A good teacher is patient and consistent: https://arxiv.org/abs/2106.05237
- Big Transfer (BiT): General Visual Representation Learning: https://arxiv.org/abs/1912.11370
- Identity Mappings in Deep Residual Networks: https://arxiv.org/abs/1603.05027
- Dataset: ImageNet-1k
- Pretrain Dataset: ImageNet-21k
- Original: https://github.com/google-research/big_transfer
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k_384', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Feature Map Extraction
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k_384',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 128, 192, 192])
# torch.Size([1, 512, 96, 96])
# torch.Size([1, 1024, 48, 48])
# torch.Size([1, 2048, 24, 24])
# torch.Size([1, 4096, 12, 12])
print(o.shape)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k_384',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 4096, 12, 12) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
Model Comparison
Explore the dataset and runtime metrics of this model in timm model results.
Citation
@inproceedings{beyer2022knowledge,
title={Knowledge distillation: A good teacher is patient and consistent},
author={Beyer, Lucas and Zhai, Xiaohua and Royer, Am{'e}lie and Markeeva, Larisa and Anil, Rohan and Kolesnikov, Alexander},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={10925--10934},
year={2022}
}
@inproceedings{Kolesnikov2019BigT,
title={Big Transfer (BiT): General Visual Representation Learning},
author={Alexander Kolesnikov and Lucas Beyer and Xiaohua Zhai and Joan Puigcerver and Jessica Yung and Sylvain Gelly and Neil Houlsby},
booktitle={European Conference on Computer Vision},
year={2019}
}
@article{He2016,
author = {Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun},
title = {Identity Mappings in Deep Residual Networks},
journal = {arXiv preprint arXiv:1603.05027},
year = {2016}
}
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}