|
--- |
|
license: apache-2.0 |
|
library_name: timm |
|
tags: |
|
- image-classification |
|
- timm |
|
datasets: |
|
- imagenet-1k |
|
- imagenet-21k |
|
--- |
|
# Model card for resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k_384 |
|
|
|
A ResNet-V2-BiT (Big Transfer w/ pre-activation ResNet) image classification model. Pretrained on ImageNet-21k and fine-tuned on ImageNet-1k by paper authors. |
|
|
|
This model uses: |
|
* Group Normalization (GN) in combination with Weight Standardization (WS) instead of Batch Normalization (BN).. |
|
|
|
|
|
## Model Details |
|
- **Model Type:** Image classification / feature backbone |
|
- **Model Stats:** |
|
- Params (M): 236.3 |
|
- GMACs: 136.2 |
|
- Activations (M): 132.6 |
|
- Image size: 384 x 384 |
|
- **Papers:** |
|
- Knowledge distillation: A good teacher is patient and consistent: https://arxiv.org/abs/2106.05237 |
|
- Big Transfer (BiT): General Visual Representation Learning: https://arxiv.org/abs/1912.11370 |
|
- Identity Mappings in Deep Residual Networks: https://arxiv.org/abs/1603.05027 |
|
- **Dataset:** ImageNet-1k |
|
- **Pretrain Dataset:** ImageNet-21k |
|
- **Original:** https://github.com/google-research/big_transfer |
|
|
|
## Model Usage |
|
### Image Classification |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
img = Image.open(urlopen( |
|
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' |
|
)) |
|
|
|
model = timm.create_model('resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k_384', pretrained=True) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 |
|
|
|
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) |
|
``` |
|
|
|
### Feature Map Extraction |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
img = Image.open(urlopen( |
|
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' |
|
)) |
|
|
|
model = timm.create_model( |
|
'resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k_384', |
|
pretrained=True, |
|
features_only=True, |
|
) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 |
|
|
|
for o in output: |
|
# print shape of each feature map in output |
|
# e.g.: |
|
# torch.Size([1, 128, 192, 192]) |
|
# torch.Size([1, 512, 96, 96]) |
|
# torch.Size([1, 1024, 48, 48]) |
|
# torch.Size([1, 2048, 24, 24]) |
|
# torch.Size([1, 4096, 12, 12]) |
|
|
|
print(o.shape) |
|
``` |
|
|
|
### Image Embeddings |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
img = Image.open(urlopen( |
|
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' |
|
)) |
|
|
|
model = timm.create_model( |
|
'resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k_384', |
|
pretrained=True, |
|
num_classes=0, # remove classifier nn.Linear |
|
) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor |
|
|
|
# or equivalently (without needing to set num_classes=0) |
|
|
|
output = model.forward_features(transforms(img).unsqueeze(0)) |
|
# output is unpooled, a (1, 4096, 12, 12) shaped tensor |
|
|
|
output = model.forward_head(output, pre_logits=True) |
|
# output is a (1, num_features) shaped tensor |
|
``` |
|
|
|
## Model Comparison |
|
Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). |
|
|
|
## Citation |
|
```bibtex |
|
@inproceedings{beyer2022knowledge, |
|
title={Knowledge distillation: A good teacher is patient and consistent}, |
|
author={Beyer, Lucas and Zhai, Xiaohua and Royer, Am{'e}lie and Markeeva, Larisa and Anil, Rohan and Kolesnikov, Alexander}, |
|
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, |
|
pages={10925--10934}, |
|
year={2022} |
|
} |
|
``` |
|
```bibtex |
|
@inproceedings{Kolesnikov2019BigT, |
|
title={Big Transfer (BiT): General Visual Representation Learning}, |
|
author={Alexander Kolesnikov and Lucas Beyer and Xiaohua Zhai and Joan Puigcerver and Jessica Yung and Sylvain Gelly and Neil Houlsby}, |
|
booktitle={European Conference on Computer Vision}, |
|
year={2019} |
|
} |
|
``` |
|
```bibtex |
|
@article{He2016, |
|
author = {Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun}, |
|
title = {Identity Mappings in Deep Residual Networks}, |
|
journal = {arXiv preprint arXiv:1603.05027}, |
|
year = {2016} |
|
} |
|
``` |
|
```bibtex |
|
@misc{rw2019timm, |
|
author = {Ross Wightman}, |
|
title = {PyTorch Image Models}, |
|
year = {2019}, |
|
publisher = {GitHub}, |
|
journal = {GitHub repository}, |
|
doi = {10.5281/zenodo.4414861}, |
|
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} |
|
} |
|
``` |
|
|