tommilyjones's picture
update model card README.md
27027e1
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-base-patch16-224-finetuned-hateful-meme-restructured
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.552

vit-base-patch16-224-finetuned-hateful-meme-restructured

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7152
  • Accuracy: 0.552

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6546 0.99 66 0.7185 0.52
0.6222 2.0 133 0.7152 0.552
0.5986 2.99 199 0.7344 0.542
0.5535 4.0 266 0.7782 0.514
0.5377 4.99 332 0.8329 0.514
0.5115 6.0 399 0.7596 0.528
0.5133 6.99 465 0.8151 0.512
0.511 8.0 532 0.7897 0.538
0.4712 8.99 598 0.8539 0.514
0.4626 9.92 660 0.8449 0.522

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.13.1
  • Tokenizers 0.13.3