|
--- |
|
library_name: peft |
|
base_model: |
|
- beomi/Llama-3-Open-Ko-8B |
|
license: mit |
|
datasets: |
|
- traintogpb/aihub-mmt-integrated-prime-base-300k |
|
language: |
|
- en |
|
- ko |
|
- ja |
|
- zh |
|
pipeline_tag: translation |
|
--- |
|
### Pretrained LM |
|
- [beomi/Llama-3-Open-Ko-8B](https://huggingface.co/beomi/Llama-3-Open-Ko-8B) (MIT License) |
|
|
|
### Training Dataset |
|
- [traintogpb/aihub-mmt-integrated-prime-base-300k](https://huggingface.co/datasets/traintogpb/aihub-mmt-integrated-prime-base-300k) |
|
- Can translate in Korean <-> English / Japanese / Chinese (Korean-centered translation) |
|
|
|
### Prompt |
|
- Template: |
|
```python |
|
# one of 'src_lang' and 'tgt_lang' should be "νκ΅μ΄" |
|
src_lang = "English" # English, νκ΅μ΄, ζ₯ζ¬θͺ, δΈζ |
|
tgt_lang = "νκ΅μ΄" # English, νκ΅μ΄, ζ₯ζ¬θͺ, δΈζ |
|
text = "New era, same empire. T1 is your 2024 Worlds champion!" |
|
|
|
# task part |
|
task_xml_dict = { |
|
'head': "<task>", |
|
'body': f"Translate the source sentence from {src_lang} to {tgt_lang}.\nBe sure to reflect the guidelines below when translating.", |
|
'tail': "</task>" |
|
} |
|
task = f"{task_xml_dict['head']}\n{task_xml_dict['body']}\n{task_xml_dict['tail']}" |
|
|
|
# instruction part |
|
instruction_xml_dict = { |
|
'head': "<instruction>", |
|
'body': ["Translate without any condition."], |
|
'tail': "</instruction>" |
|
} |
|
instruction_xml_body = '\n'.join([f'- {body}' for body in instruction_xml_dict['body']]) |
|
instruction = f"{instruction_xml_dict['head']}\n{instruction_xml_body}\n{instruction_xml_dict['tail']}" |
|
|
|
# translation part |
|
src_xml_dict = { |
|
'head': f"<source><{src_lang}>", |
|
'body': text.strip(), |
|
'tail': f"</{src_lang}></source>" |
|
} |
|
tgt_xml_dict = { |
|
'head': f"<target><{LLAMA_LANG_TABLE[tgt_lang]}>", |
|
} |
|
src = f"{src_xml_dict['head']}\n{src_xml_dict['body']}\n{src_xml_dict['tail']}" |
|
tgt = f"{tgt_xml_dict['head']}\n" |
|
translation_xml_dict = { |
|
'head': "<translation>", |
|
'body': f"{src}\n{tgt}", |
|
} |
|
translation = f"{translation_xml_dict['head']}\n{translation_xml_dict['body']}" |
|
|
|
# final prompt |
|
prompt = f"{task}\n\n{instruction}\n\n{translation}" |
|
``` |
|
|
|
- Example Input: |
|
``` |
|
<task> |
|
Translate the source sentence from English to νκ΅μ΄. |
|
Be sure to reflect the guidelines below when translating. |
|
</task> |
|
|
|
<instruction> |
|
- Translate without any condition. |
|
</instruction> |
|
|
|
<translation> |
|
<source><English> |
|
New era, same empire. T1 is your 2024 Worlds champion! |
|
</English></source> |
|
<target><νκ΅μ΄> |
|
``` |
|
|
|
- Expected Output: |
|
``` |
|
μλ‘μ΄ μλ, μ¬μ ν μμ‘°. ν°μμ΄ 2024 μμ¦μ μ±νΌμΈμ
λλ€! |
|
</νκ΅μ΄></target> |
|
</translation> |
|
``` |
|
|
|
### Training |
|
- Trained with LoRA adapter |
|
- PLM: bfloat16 |
|
- Adapter: bfloat16 |
|
- Adapted to all the linear layers (around 2.05%) |
|
|
|
### Usage (IMPORTANT) |
|
- Should remove the EOS token at the end of the prompt. |
|
```python |
|
# MODEL |
|
model_name = 'beomi/Llama-3-Open-Ko-8B' |
|
adapter_name = 'traintogpb/llama-3-mmt-xml-it-sft-adapter' |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
max_length=4000, |
|
attn_implementation='flash_attention_2', |
|
torch_dtype=torch.bfloat16, |
|
) |
|
model = PeftModel.from_pretrained( |
|
model, |
|
adapter_path=adapter_name, |
|
torch_dtype=torch.bfloat16, |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(adapter_name) |
|
tokenizer.pad_token_id = 128002 # eos_token_id and pad_token_id should be different |
|
|
|
text = "New era, same empire. T1 is your 2024 Worlds champion!" |
|
input_prompt = "<task> ~ <target><{tgt_lang}>" # prompt with the template above |
|
inputs = tokenizer(input_prompt, max_length=2000, truncation=True, return_tensors='pt') |
|
|
|
if inputs['input_ids'][0][-1] == tokenizer.eos_token_id: |
|
inputs['input_ids'] = inputs['input_ids'][0][:-1].unsqueeze(dim=0) |
|
inputs['attention_mask'] = inputs['attention_mask'][0][:-1].unsqueeze(dim=0) |
|
|
|
outputs = model.generate(**inputs, max_length=2000, eos_token_id=tokenizer.eos_token_id) |
|
|
|
input_len = len(inputs['input_ids'].squeeze()) |
|
translation = tokenizer.decode(outputs[0][input_len:], skip_special_tokens=True) |
|
print(translation) |
|
``` |
|
|
|
### Framework versions |
|
|
|
- PEFT 0.8.2 |