ner-education-hcmut / README.md
trickstar0's picture
End of training
e996761 verified
|
raw
history blame
3.83 kB
metadata
base_model: NlpHUST/ner-vietnamese-electra-base
tags:
  - generated_from_trainer
model-index:
  - name: ner-education-hcmut
    results: []

ner-education-hcmut

This model is a fine-tuned version of NlpHUST/ner-vietnamese-electra-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0681
  • Location: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7}
  • Miscellaneous: {'precision': 0.6911764705882353, 'recall': 0.7230769230769231, 'f1': 0.7067669172932332, 'number': 65}
  • Organization: {'precision': 0.4166666666666667, 'recall': 0.5, 'f1': 0.45454545454545453, 'number': 10}
  • Person: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3}
  • Overall Precision: 0.6190
  • Overall Recall: 0.6118
  • Overall F1: 0.6154
  • Overall Accuracy: 0.9851

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Location Miscellaneous Organization Person Overall Precision Overall Recall Overall F1 Overall Accuracy
No log 1.0 207 0.0705 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} {'precision': 0.49333333333333335, 'recall': 0.5692307692307692, 'f1': 0.5285714285714285, 'number': 65} {'precision': 0.36363636363636365, 'recall': 0.4, 'f1': 0.380952380952381, 'number': 10} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} 0.4556 0.4824 0.4686 0.9806
No log 2.0 414 0.0672 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} {'precision': 0.6133333333333333, 'recall': 0.7076923076923077, 'f1': 0.657142857142857, 'number': 65} {'precision': 0.4666666666666667, 'recall': 0.7, 'f1': 0.56, 'number': 10} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} 0.5638 0.6235 0.5922 0.9838
0.0564 3.0 621 0.0681 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} {'precision': 0.6911764705882353, 'recall': 0.7230769230769231, 'f1': 0.7067669172932332, 'number': 65} {'precision': 0.4166666666666667, 'recall': 0.5, 'f1': 0.45454545454545453, 'number': 10} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} 0.6190 0.6118 0.6154 0.9851

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1