tsavage68's picture
End of training
8b80077 verified
metadata
library_name: transformers
license: llama3
base_model: tsavage68/IE_L3_1000steps_1e6rate_SFT
tags:
  - trl
  - dpo
  - generated_from_trainer
model-index:
  - name: IE_L3_1000steps_1e8rate_03beta_cSFTDPO
    results: []

IE_L3_1000steps_1e8rate_03beta_cSFTDPO

This model is a fine-tuned version of tsavage68/IE_L3_1000steps_1e6rate_SFT on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6864
  • Rewards/chosen: -0.0017
  • Rewards/rejected: -0.0201
  • Rewards/accuracies: 0.4050
  • Rewards/margins: 0.0184
  • Logps/rejected: -75.6942
  • Logps/chosen: -82.8034
  • Logits/rejected: -0.7975
  • Logits/chosen: -0.7402

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-08
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6912 0.4 50 0.6940 -0.0075 -0.0104 0.4000 0.0029 -75.6618 -82.8226 -0.7964 -0.7393
0.6947 0.8 100 0.6925 0.0014 -0.0057 0.3850 0.0070 -75.6461 -82.7931 -0.7963 -0.7394
0.6873 1.2 150 0.6982 -0.0140 -0.0096 0.3950 -0.0044 -75.6592 -82.8444 -0.7963 -0.7393
0.6777 1.6 200 0.6892 -0.0038 -0.0171 0.4100 0.0134 -75.6844 -82.8103 -0.7963 -0.7393
0.6879 2.0 250 0.6890 -0.0049 -0.0185 0.3800 0.0136 -75.6890 -82.8142 -0.7980 -0.7411
0.6991 2.4 300 0.6849 -0.0170 -0.0393 0.4300 0.0223 -75.7583 -82.8544 -0.7974 -0.7404
0.678 2.8 350 0.6716 -0.0122 -0.0614 0.4900 0.0492 -75.8319 -82.8383 -0.7967 -0.7398
0.7072 3.2 400 0.6885 -0.0120 -0.0278 0.4350 0.0158 -75.7200 -82.8378 -0.7974 -0.7404
0.6858 3.6 450 0.6943 -0.0160 -0.0191 0.3450 0.0031 -75.6910 -82.8512 -0.7974 -0.7404
0.6815 4.0 500 0.6821 -0.0089 -0.0364 0.4300 0.0275 -75.7484 -82.8273 -0.7972 -0.7401
0.6857 4.4 550 0.6879 -0.0086 -0.0255 0.4000 0.0169 -75.7121 -82.8263 -0.7972 -0.7403
0.6825 4.8 600 0.6854 -0.0203 -0.0417 0.4150 0.0214 -75.7663 -82.8655 -0.7968 -0.7398
0.698 5.2 650 0.6921 -0.0186 -0.0277 0.4200 0.0091 -75.7196 -82.8597 -0.7973 -0.7401
0.6795 5.6 700 0.6885 -0.0063 -0.0217 0.3700 0.0154 -75.6996 -82.8189 -0.7973 -0.7402
0.6931 6.0 750 0.6875 -0.0110 -0.0282 0.4150 0.0172 -75.7213 -82.8344 -0.7974 -0.7404
0.6804 6.4 800 0.6888 -0.0053 -0.0191 0.3800 0.0137 -75.6909 -82.8156 -0.7975 -0.7402
0.6958 6.8 850 0.6864 -0.0017 -0.0201 0.4050 0.0184 -75.6942 -82.8034 -0.7975 -0.7402
0.6932 7.2 900 0.6864 -0.0017 -0.0201 0.4050 0.0184 -75.6942 -82.8034 -0.7975 -0.7402
0.6785 7.6 950 0.6864 -0.0017 -0.0201 0.4050 0.0184 -75.6942 -82.8034 -0.7975 -0.7402
0.6947 8.0 1000 0.6864 -0.0017 -0.0201 0.4050 0.0184 -75.6942 -82.8034 -0.7975 -0.7402

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.0.0+cu117
  • Datasets 3.0.0
  • Tokenizers 0.19.1