tsavage68's picture
End of training
169e74f verified
metadata
license: llama3
base_model: tsavage68/Summary_L3_1000steps_1e7rate_SFT2
tags:
  - trl
  - dpo
  - generated_from_trainer
model-index:
  - name: Summary_L3_1000steps_1e5rate_01beta_CSFTDPO
    results: []

Summary_L3_1000steps_1e5rate_01beta_CSFTDPO

This model is a fine-tuned version of tsavage68/Summary_L3_1000steps_1e7rate_SFT2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5961
  • Rewards/chosen: -0.8715
  • Rewards/rejected: -3.9531
  • Rewards/accuracies: 0.1400
  • Rewards/margins: 3.0816
  • Logps/rejected: -54.7948
  • Logps/chosen: -18.0977
  • Logits/rejected: -1.3576
  • Logits/chosen: -1.3527

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.5546 0.2004 50 0.5961 -0.8720 -3.9451 0.1400 3.0730 -54.7146 -18.1031 -1.3571 -1.3522
0.6585 0.4008 100 0.5961 -0.8712 -3.9495 0.1400 3.0783 -54.7588 -18.0949 -1.3575 -1.3526
0.6238 0.6012 150 0.5961 -0.8681 -3.9389 0.1400 3.0707 -54.6525 -18.0641 -1.3563 -1.3514
0.6065 0.8016 200 0.5961 -0.8725 -3.9499 0.1400 3.0774 -54.7626 -18.1074 -1.3568 -1.3519
0.6238 1.0020 250 0.5961 -0.8717 -3.9513 0.1400 3.0796 -54.7771 -18.1000 -1.3576 -1.3527
0.6238 1.2024 300 0.5961 -0.8725 -3.9481 0.1400 3.0756 -54.7450 -18.1078 -1.3571 -1.3522
0.6238 1.4028 350 0.5961 -0.8727 -3.9498 0.1400 3.0771 -54.7614 -18.1094 -1.3572 -1.3523
0.5718 1.6032 400 0.5961 -0.8724 -3.9505 0.1400 3.0781 -54.7691 -18.1072 -1.3573 -1.3524
0.5892 1.8036 450 0.5961 -0.8726 -3.9502 0.1400 3.0776 -54.7655 -18.1083 -1.3573 -1.3523
0.5718 2.0040 500 0.5961 -0.8717 -3.9446 0.1400 3.0728 -54.7095 -18.1001 -1.3575 -1.3526
0.5718 2.2044 550 0.5961 -0.8733 -3.9538 0.1400 3.0805 -54.8019 -18.1157 -1.3569 -1.3521
0.5545 2.4048 600 0.5961 -0.8691 -3.9509 0.1400 3.0818 -54.7729 -18.0740 -1.3573 -1.3524
0.5199 2.6052 650 0.5961 -0.8731 -3.9531 0.1400 3.0800 -54.7946 -18.1135 -1.3573 -1.3524
0.6238 2.8056 700 0.5961 -0.8719 -3.9544 0.1400 3.0826 -54.8080 -18.1013 -1.3581 -1.3532
0.6065 3.0060 750 0.5961 -0.8719 -3.9517 0.1400 3.0798 -54.7812 -18.1017 -1.3575 -1.3526
0.6412 3.2064 800 0.5961 -0.8706 -3.9530 0.1400 3.0824 -54.7941 -18.0886 -1.3574 -1.3525
0.6585 3.4068 850 0.5961 -0.8715 -3.9512 0.1400 3.0798 -54.7760 -18.0975 -1.3577 -1.3529
0.6238 3.6072 900 0.5961 -0.8715 -3.9512 0.1400 3.0798 -54.7760 -18.0975 -1.3577 -1.3529
0.5372 3.8076 950 0.5961 -0.8715 -3.9531 0.1400 3.0816 -54.7948 -18.0977 -1.3576 -1.3527
0.6238 4.0080 1000 0.5961 -0.8715 -3.9531 0.1400 3.0816 -54.7948 -18.0977 -1.3576 -1.3527

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.0.0+cu117
  • Datasets 2.20.0
  • Tokenizers 0.19.1