tsavage68's picture
End of training
4d102ec verified
metadata
license: llama3
base_model: tsavage68/Summary_L3_1000steps_1e7rate_SFT2
tags:
  - trl
  - dpo
  - generated_from_trainer
model-index:
  - name: Summary_L3_1000steps_1e7rate_05beta_CSFTDPO
    results: []

Summary_L3_1000steps_1e7rate_05beta_CSFTDPO

This model is a fine-tuned version of tsavage68/Summary_L3_1000steps_1e7rate_SFT2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5962
  • Rewards/chosen: 0.0959
  • Rewards/rejected: -1.3470
  • Rewards/accuracies: 0.1400
  • Rewards/margins: 1.4430
  • Logps/rejected: -17.9578
  • Logps/chosen: -9.1909
  • Logits/rejected: -1.1008
  • Logits/chosen: -1.1023

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-07
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6835 0.2004 50 0.6724 0.0066 -0.0411 0.1350 0.0477 -15.3460 -9.3696 -1.0959 -1.0974
0.6728 0.4008 100 0.6273 0.0168 -0.1873 0.1400 0.2041 -15.6383 -9.3492 -1.0942 -1.0958
0.6258 0.6012 150 0.5991 0.0579 -0.5769 0.1400 0.6348 -16.4175 -9.2670 -1.0922 -1.0939
0.6069 0.8016 200 0.5969 0.0750 -0.8979 0.1400 0.9729 -17.0596 -9.2328 -1.0945 -1.0962
0.6239 1.0020 250 0.5966 0.0810 -1.0669 0.1400 1.1479 -17.3976 -9.2207 -1.0969 -1.0985
0.6238 1.2024 300 0.5965 0.0913 -1.1354 0.1400 1.2267 -17.5345 -9.2001 -1.0979 -1.0995
0.6239 1.4028 350 0.5963 0.0832 -1.2037 0.1400 1.2869 -17.6712 -9.2164 -1.0994 -1.1009
0.5723 1.6032 400 0.5963 0.0939 -1.2663 0.1400 1.3602 -17.7963 -9.1950 -1.0995 -1.1010
0.5892 1.8036 450 0.5962 0.0906 -1.3049 0.1400 1.3956 -17.8736 -9.2015 -1.1002 -1.1017
0.5719 2.0040 500 0.5962 0.0919 -1.3133 0.1400 1.4052 -17.8904 -9.1991 -1.1004 -1.1018
0.5719 2.2044 550 0.5963 0.0928 -1.3222 0.1400 1.4150 -17.9082 -9.1971 -1.1003 -1.1018
0.5545 2.4048 600 0.5962 0.0967 -1.3312 0.1400 1.4279 -17.9262 -9.1895 -1.1006 -1.1020
0.5199 2.6052 650 0.5962 0.0910 -1.3466 0.1400 1.4376 -17.9569 -9.2007 -1.1008 -1.1023
0.624 2.8056 700 0.5962 0.0912 -1.3547 0.1400 1.4459 -17.9732 -9.2004 -1.1006 -1.1021
0.6065 3.0060 750 0.5962 0.0952 -1.3445 0.1400 1.4397 -17.9527 -9.1924 -1.1007 -1.1022
0.6412 3.2064 800 0.5962 0.0965 -1.3521 0.1400 1.4486 -17.9680 -9.1898 -1.1008 -1.1023
0.6585 3.4068 850 0.5962 0.0984 -1.3572 0.1400 1.4556 -17.9781 -9.1860 -1.1005 -1.1020
0.6238 3.6072 900 0.5962 0.0967 -1.3456 0.1400 1.4423 -17.9550 -9.1894 -1.1010 -1.1024
0.5372 3.8076 950 0.5962 0.0959 -1.3470 0.1400 1.4430 -17.9578 -9.1909 -1.1008 -1.1023
0.6238 4.0080 1000 0.5962 0.0959 -1.3470 0.1400 1.4430 -17.9578 -9.1909 -1.1008 -1.1023

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.0.0+cu117
  • Datasets 2.20.0
  • Tokenizers 0.19.1