komodo-7b-base-GGUF / README.md
ukung's picture
Update README.md
7b302b9 verified
metadata
base_model: Yellow-AI-NLP/komodo-7b-base
inference: false
license: apache-2.0
model_type: llama
pipeline_tag: text-generation
prompt_template: |
  <s>[INST] {prompt} [/INST]
quantized_by: ukung
tags:
  - finetuned

Description

These files were quantised using hardware kindly provided by Massed Compute.

About GGUF

GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.

Here is an incomplete list of clients and libraries that are known to support GGUF:

  • llama.cpp. The source project for GGUF. Offers a CLI and a server option.
  • text-generation-webui, the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
  • KoboldCpp, a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
  • GPT4All, a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
  • LM Studio, an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
  • LoLLMS Web UI, a great web UI with many interesting and unique features, including a full model library for easy model selection.
  • Faraday.dev, an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
  • llama-cpp-python, a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
  • candle, a Rust ML framework with a focus on performance, including GPU support, and ease of use.
  • ctransformers, a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.

Repositories available

Prompt template: Mistral

<s>[INST] {prompt} [/INST]

Compatibility

These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit d0cee0d

They are also compatible with many third party UIs and libraries - please see the list at the top of this README.

Explanation of quantisation methods

Click to see details

The new methods available are:

  • q2_k: Uses Q4_K for the attention.vw and feed_forward.w2 tensors, Q2_K for the other tensors.
  • q3_k_l: Uses Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else Q3_K
  • q3_k_m: Uses Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else Q3_K
  • q3_k_s: Uses Q3_K for all tensors
  • q4_0: Original quant method, 4-bit.
  • q4_1: Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models.
  • q4_k_m: Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q4_K
  • q4_k_s: Uses Q4_K for all tensors
  • q5_0: Higher accuracy, higher resource usage and slower inference.
  • q5_1: Even higher accuracy, resource usage and slower inference.
  • q5_k_m: Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q5_K
  • q5_k_s: Uses Q5_K for all tensors
  • q6_k: Uses Q8_K for all tensors
  • q8_0: Almost indistinguishable from float16. High resource use and slow. Not recommended for most users.

Refer to the Provided Files table below to see what files use which methods, and how.

Provided files

Name Quant method Bits Size Max RAM required Use case
komodo-7b-base-q2_k.gguf Q2_K 2 2.55 GB Tidak diketahui smallest, significant quality loss - not recommended for most purposes
komodo-7b-base-q3_k_l.gguf Q3_K_L 3 3.61 GB Tidak diketahui very small, high quality loss
komodo-7b-base-q3_k_m.gguf Q3_K_M 3 3.31 GB Tidak diketahui very small, high quality loss
komodo-7b-base-q3_k_s.gguf Q3_K_S 3 2.96 GB Tidak diketahui very small, high quality loss
komodo-7b-base-q4_0.gguf Q4_0 4 3.84 GB Tidak diketahui smaller, moderate quality loss
komodo-7b-base-q4_1.gguf Q4_1 4 4.26 GB Tidak diketahui smaller, moderate quality loss
komodo-7b-base-q4_k_m.gguf Q4_K_M 4 4.1 GB Tidak diketahui smaller, moderate quality loss
komodo-7b-base-q4_k_s.gguf Q4_K_S 4 3.87 GB Tidak diketahui smaller, moderate quality loss
komodo-7b-base-q5_0.gguf Q5_0 5 4.67 GB Tidak diketahui medium, balanced quality
komodo-7b-base-q5_1.gguf Q5_1 5 5.08 GB Tidak diketahui medium, balanced quality
komodo-7b-base-q5_k_m.gguf Q5_K_M 5 4.8 GB Tidak diketahui medium, balanced quality
komodo-7b-base-q5_k_s.gguf Q5_K_S 5 4.67 GB Tidak diketahui medium, balanced quality
komodo-7b-base-q6_k.gguf Q6_K 6 5.55 GB Tidak diketahui larger, higher quality
komodo-7b-base-q8_0.gguf Q8_0 8 7.19 GB Tidak diketahui largest, best quality

Note: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.

How to download GGUF files

Note for manual downloaders: You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.

The following clients/libraries will automatically download models for you, providing a list of available models to choose from:

  • LM Studio
  • LoLLMS Web UI
  • Faraday.dev

In text-generation-webui

Under Download Model, you can enter the model repo: TheBloke/Mistral-7B-Instruct-v0.2-GGUF and below it, a specific filename to download, such as: komodo-7b-base-q4_0.gguf.

Then click Download.

On the command line, including multiple files at once

I recommend using the huggingface-hub Python library:

pip3 install huggingface-hub

Then you can download any individual model file to the current directory, at high speed, with a command like this:

huggingface-cli download TheBloke/Mistral-7B-Instruct-v0.2-GGUF komodo-7b-base-q4_0.gguf --local-dir . --local-dir-use-symlinks False
More advanced huggingface-cli download usage (click to read)

You can also download multiple files at once with a pattern:

huggingface-cli download Yellow-AI-NLP/komodo-7b-base --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'

For more documentation on downloading with huggingface-cli, please see: HF -> Hub Python Library -> Download files -> Download from the CLI.

To accelerate downloads on fast connections (1Gbit/s or higher), install hf_transfer:

pip3 install hf_transfer

And set environment variable HF_HUB_ENABLE_HF_TRANSFER to 1:

HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download Yellow-AI-NLP/komodo-7b-base komodo-7b-base-q4_0.gguf --local-dir . --local-dir-use-symlinks False

Windows Command Line users: You can set the environment variable by running set HF_HUB_ENABLE_HF_TRANSFER=1 before the download command.

Example llama.cpp command

Make sure you are using llama.cpp from commit d0cee0d or later.

./main -ngl 35 -m komodo-7b-base-q4_0.gguf --color -c 32768 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<s>[INST] {prompt} [/INST]"

Change -ngl 32 to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.

Change -c 32768 to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.

If you want to have a chat-style conversation, replace the -p <PROMPT> argument with -i -ins

For other parameters and how to use them, please refer to the llama.cpp documentation

How to run in text-generation-webui

Further instructions can be found in the text-generation-webui documentation, here: text-generation-webui/docs/04 ‐ Model Tab.md.

How to run from Python code

You can use GGUF models from Python using the llama-cpp-python or ctransformers libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.

How to load this model in Python code, using llama-cpp-python

For full documentation, please see: llama-cpp-python docs.

First install the package

Run one of the following commands, according to your system:

# Base ctransformers with no GPU acceleration
pip install llama-cpp-python
# With NVidia CUDA acceleration
CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
# Or with OpenBLAS acceleration
CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
# Or with CLBLast acceleration
CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
# Or with AMD ROCm GPU acceleration (Linux only)
CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
# Or with Metal GPU acceleration for macOS systems only
CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python

# In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
$env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
pip install llama-cpp-python

Simple llama-cpp-python example code

from llama_cpp import Llama

# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
llm = Llama(
  model_path="./komodo-7b-base-q4_0.gguf",  # Download the model file first
  n_ctx=32768,  # The max sequence length to use - note that longer sequence lengths require much more resources
  n_threads=8,            # The number of CPU threads to use, tailor to your system and the resulting performance
  n_gpu_layers=35         # The number of layers to offload to GPU, if you have GPU acceleration available
)

# Simple inference example
output = llm(
  "<s>[INST] {prompt} [/INST]", # Prompt
  max_tokens=512,  # Generate up to 512 tokens
  stop=["</s>"],   # Example stop token - not necessarily correct for this specific model! Please check before using.
  echo=True        # Whether to echo the prompt
)

# Chat Completion API

llm = Llama(model_path="./komodo-7b-base-q4_0.gguf", chat_format="llama-2")  # Set chat_format according to the model you are using
llm.create_chat_completion(
    messages = [
        {"role": "system", "content": "You are a story writing assistant."},
        {
            "role": "user",
            "content": "Write a story about llamas."
        }
    ]
)

How to use with LangChain

Here are guides on using llama-cpp-python and ctransformers with LangChain:

Discord

For further support, and discussions on these models and AI in general, join us at:

TheBloke AI's Discord server

Thanks, and how to contribute

Thanks to the chirper.ai team!

Thanks to Clay from gpus.llm-utils.org!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Instruction format

In order to leverage instruction fine-tuning, your prompt should be surrounded by [INST] and [/INST] tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.

E.g.

text = "<s>[INST] What is your favourite condiment? [/INST]"
"Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
"[INST] Do you have mayonnaise recipes? [/INST]"

This format is available as a chat template via the apply_chat_template() method:

pip install ctransformers

from ctransformers import AutoModelForCausalLM
llm1 = AutoModelForCausalLM.from_pretrained("ukung/komodo-7b-base-GGUF", model_file="komodo-7b-base-q4_0.gguf", model_type="llama", gpu_layers=50)
prompt="""jelaskan dengan detail apa itu self-attention?"""

for text in llm1(prompt, stream=True, max_new_tokens=2048, stop=["</s>", "<s>", "<|im_start|>", "<|im_end|>", "|im_end|>", "|im_end|", "<"]):
    print(text, end='')

Model Architecture

This instruction model is based on Llama2, a transformer model with the following architecture choices:

  • Grouped-Query Attention
  • Sliding-Window Attention
  • Byte-fallback BPE tokenizer

Troubleshooting

  • If you see the following error:
Traceback (most recent call last):
File "", line 1, in
File "/transformers/models/auto/auto_factory.py", line 482, in from_pretrained
config, kwargs = AutoConfig.from_pretrained(
File "/transformers/models/auto/configuration_auto.py", line 1022, in from_pretrained
config_class = CONFIG_MAPPING[config_dict["model_type"]]
File "/transformers/models/auto/configuration_auto.py", line 723, in getitem
raise KeyError(key)
KeyError: 'llama'

Installing transformers from source should solve the issue pip install git+https://github.com/huggingface/transformers

This should not be required after transformers-v4.33.4.

Limitations

The model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance. It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.

The AI Team

UkungZulfah@gmail.com