cer_model / README.md
urbija's picture
cer-ner
88e86d8 verified
|
raw
history blame
1.56 kB
metadata
base_model: dmis-lab/biobert-base-cased-v1.1
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: cer_model
    results: []

cer_model

This model is a fine-tuned version of dmis-lab/biobert-base-cased-v1.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4081
  • Precision: 0.9099
  • Recall: 0.8471
  • F1: 0.8774
  • Accuracy: 0.9268

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.2
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0179 1.0 4841 0.4081 0.9099 0.8471 0.8774 0.9268

Framework versions

  • Transformers 4.37.0
  • Pytorch 2.1.2
  • Datasets 2.1.0
  • Tokenizers 0.15.1