|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: swin-tiny-patch4-window7-224-finetuned-agrivision |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9202733485193622 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# swin-tiny-patch4-window7-224-finetuned-agrivision |
|
|
|
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3605 |
|
- Accuracy: 0.9203 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.5913 | 1.0 | 31 | 0.7046 | 0.7175 | |
|
| 0.1409 | 2.0 | 62 | 0.8423 | 0.6788 | |
|
| 0.0825 | 3.0 | 93 | 0.6224 | 0.7654 | |
|
| 0.0509 | 4.0 | 124 | 0.4379 | 0.8360 | |
|
| 0.0439 | 5.0 | 155 | 0.1706 | 0.9317 | |
|
| 0.0107 | 6.0 | 186 | 0.1914 | 0.9362 | |
|
| 0.0134 | 7.0 | 217 | 0.2491 | 0.9089 | |
|
| 0.0338 | 8.0 | 248 | 0.2119 | 0.9362 | |
|
| 0.0306 | 9.0 | 279 | 0.4502 | 0.8610 | |
|
| 0.0054 | 10.0 | 310 | 0.4990 | 0.8747 | |
|
| 0.0033 | 11.0 | 341 | 0.2746 | 0.9112 | |
|
| 0.0021 | 12.0 | 372 | 0.2501 | 0.9317 | |
|
| 0.0068 | 13.0 | 403 | 0.1883 | 0.9522 | |
|
| 0.0038 | 14.0 | 434 | 0.3672 | 0.9134 | |
|
| 0.0006 | 15.0 | 465 | 0.2275 | 0.9408 | |
|
| 0.0011 | 16.0 | 496 | 0.3349 | 0.9134 | |
|
| 0.0017 | 17.0 | 527 | 0.3329 | 0.9157 | |
|
| 0.0007 | 18.0 | 558 | 0.2508 | 0.9317 | |
|
| 0.0023 | 19.0 | 589 | 0.2338 | 0.9385 | |
|
| 0.0003 | 20.0 | 620 | 0.3193 | 0.9226 | |
|
| 0.002 | 21.0 | 651 | 0.4604 | 0.9043 | |
|
| 0.0023 | 22.0 | 682 | 0.3338 | 0.9203 | |
|
| 0.005 | 23.0 | 713 | 0.2925 | 0.9271 | |
|
| 0.0001 | 24.0 | 744 | 0.2022 | 0.9522 | |
|
| 0.0002 | 25.0 | 775 | 0.2699 | 0.9339 | |
|
| 0.0007 | 26.0 | 806 | 0.2603 | 0.9385 | |
|
| 0.0005 | 27.0 | 837 | 0.4120 | 0.9134 | |
|
| 0.0003 | 28.0 | 868 | 0.3550 | 0.9203 | |
|
| 0.0008 | 29.0 | 899 | 0.3657 | 0.9203 | |
|
| 0.0 | 30.0 | 930 | 0.3605 | 0.9203 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.21.1 |
|
- Pytorch 1.12.1 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.12.1 |
|
|