|
--- |
|
license: apache-2.0 |
|
base_model: t5-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: nvl-ca |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# nvl-ca |
|
|
|
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.6425 |
|
- Rouge1: 36.2683 |
|
- Rouge2: 17.3571 |
|
- Rougel: 31.414 |
|
- Rougelsum: 33.3573 |
|
- Gen Len: 18.1 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 12 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| 2.7351 | 1.0 | 50 | 2.0532 | 29.1549 | 10.8095 | 24.5213 | 27.1706 | 18.54 | |
|
| 2.2954 | 2.0 | 100 | 1.8884 | 34.1103 | 15.1143 | 28.6964 | 30.6995 | 18.5 | |
|
| 2.1461 | 3.0 | 150 | 1.7999 | 33.7268 | 15.3397 | 29.1248 | 30.7545 | 18.48 | |
|
| 2.0402 | 4.0 | 200 | 1.7510 | 35.2811 | 16.3829 | 29.5922 | 31.3828 | 18.64 | |
|
| 1.9727 | 5.0 | 250 | 1.7251 | 35.9939 | 17.0171 | 30.9116 | 32.514 | 18.3 | |
|
| 1.9185 | 6.0 | 300 | 1.6982 | 36.1673 | 17.3892 | 31.4179 | 33.2171 | 18.06 | |
|
| 1.8791 | 7.0 | 350 | 1.6809 | 36.0791 | 17.9475 | 31.6153 | 33.2867 | 18.2 | |
|
| 1.8443 | 8.0 | 400 | 1.6631 | 36.3616 | 17.7432 | 31.9719 | 33.651 | 17.96 | |
|
| 1.8322 | 9.0 | 450 | 1.6533 | 35.9061 | 16.9737 | 31.1291 | 33.1402 | 17.96 | |
|
| 1.7978 | 10.0 | 500 | 1.6482 | 35.8366 | 17.0094 | 31.3893 | 33.3356 | 17.88 | |
|
| 1.8037 | 11.0 | 550 | 1.6440 | 36.2683 | 17.3571 | 31.414 | 33.3573 | 18.1 | |
|
| 1.7937 | 12.0 | 600 | 1.6425 | 36.2683 | 17.3571 | 31.414 | 33.3573 | 18.1 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.1 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|