vishalkatheriya18's picture
End of training
bc77320 verified
metadata
license: apache-2.0
base_model: facebook/convnextv2-tiny-1k-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - precision
model-index:
  - name: convnextv2-tiny-1k-224-finetuned-crop-upperfull-mix
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8004385964912281
          - name: Precision
            type: precision
            value: 0.8160100686256399

convnextv2-tiny-1k-224-finetuned-crop-upperfull-mix

This model is a fine-tuned version of facebook/convnextv2-tiny-1k-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6187
  • Accuracy: 0.8004
  • Precision: 0.8160

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 10
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision
No log 1.0 183 2.1471 0.4693 0.5128
No log 2.0 366 1.4576 0.6579 0.6955
1.9821 3.0 549 1.1372 0.6754 0.7183
1.9821 4.0 732 0.9214 0.7303 0.7659
1.9821 5.0 915 0.7792 0.7478 0.7661
0.8885 6.0 1098 0.7455 0.7654 0.7780
0.8885 7.0 1281 0.6756 0.7873 0.8020
0.8885 8.0 1464 0.6787 0.7807 0.7932
0.5696 9.0 1647 0.6694 0.7982 0.8099
0.5696 10.0 1830 0.6799 0.7741 0.7930
0.4056 11.0 2013 0.6187 0.8004 0.8160
0.4056 12.0 2196 0.6868 0.7675 0.8063
0.4056 13.0 2379 0.7525 0.7544 0.7803
0.2904 14.0 2562 0.6572 0.7895 0.8093

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1