|
--- |
|
license: apache-2.0 |
|
base_model: facebook/convnextv2-tiny-1k-224 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
- precision |
|
model-index: |
|
- name: convnextv2-tiny-1k-224-finetuned-crop-upperfull-mix |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8004385964912281 |
|
- name: Precision |
|
type: precision |
|
value: 0.8160100686256399 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# convnextv2-tiny-1k-224-finetuned-crop-upperfull-mix |
|
|
|
This model is a fine-tuned version of [facebook/convnextv2-tiny-1k-224](https://huggingface.co/facebook/convnextv2-tiny-1k-224) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6187 |
|
- Accuracy: 0.8004 |
|
- Precision: 0.8160 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 10 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 100 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:| |
|
| No log | 1.0 | 183 | 2.1471 | 0.4693 | 0.5128 | |
|
| No log | 2.0 | 366 | 1.4576 | 0.6579 | 0.6955 | |
|
| 1.9821 | 3.0 | 549 | 1.1372 | 0.6754 | 0.7183 | |
|
| 1.9821 | 4.0 | 732 | 0.9214 | 0.7303 | 0.7659 | |
|
| 1.9821 | 5.0 | 915 | 0.7792 | 0.7478 | 0.7661 | |
|
| 0.8885 | 6.0 | 1098 | 0.7455 | 0.7654 | 0.7780 | |
|
| 0.8885 | 7.0 | 1281 | 0.6756 | 0.7873 | 0.8020 | |
|
| 0.8885 | 8.0 | 1464 | 0.6787 | 0.7807 | 0.7932 | |
|
| 0.5696 | 9.0 | 1647 | 0.6694 | 0.7982 | 0.8099 | |
|
| 0.5696 | 10.0 | 1830 | 0.6799 | 0.7741 | 0.7930 | |
|
| 0.4056 | 11.0 | 2013 | 0.6187 | 0.8004 | 0.8160 | |
|
| 0.4056 | 12.0 | 2196 | 0.6868 | 0.7675 | 0.8063 | |
|
| 0.4056 | 13.0 | 2379 | 0.7525 | 0.7544 | 0.7803 | |
|
| 0.2904 | 14.0 | 2562 | 0.6572 | 0.7895 | 0.8093 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|