File size: 15,997 Bytes
ffa99bc 6cbacb2 ebdc3fb ffa99bc b110495 ffa99bc 207616e ffa99bc ed8a82a ffa99bc 6ad4d23 207616e ffa99bc 6bf75d8 a36a1b1 6ad4d23 6bf75d8 a36a1b1 207616e 6bf75d8 a36a1b1 207616e 6bf75d8 21ad81c 6ad4d23 6bf75d8 ffa99bc 207616e ffa99bc 7607a32 ffa99bc 207616e 7607a32 ffa99bc 6bf75d8 ffa99bc 207616e ffa99bc 3cc36e1 ffa99bc 207616e 6bf75d8 207616e ffa99bc 3cc36e1 ffa99bc ed8a82a 7607a32 ffa99bc ed8a82a ffa99bc c249758 ed8a82a 67a66cc ed8a82a ffa99bc 7b909e9 ffa99bc ed8a82a 21ad81c ed8a82a 7b909e9 ffa99bc ebdc3fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
---
language:
- ja
- en
- de
- is
- zh
- cs
license: llama2
inference: false
model-index:
- name: ALMA-7B-Ja-V2
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 52.39
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=webbigdata/ALMA-7B-Ja-V2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 77.92
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=webbigdata/ALMA-7B-Ja-V2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 44.72
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=webbigdata/ALMA-7B-Ja-V2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 38.66
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=webbigdata/ALMA-7B-Ja-V2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 73.4
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=webbigdata/ALMA-7B-Ja-V2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 0.0
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=webbigdata/ALMA-7B-Ja-V2
name: Open LLM Leaderboard
---
# New Translation model released.
[C3TR-Adapter](https://huggingface.co/webbigdata/C3TR-Adapter) is the QLoRA adapter for google/gemma-7b.
Despite the 4-bit quantization, the memory GPU requirement has increased to 8.1 GB.
However, it is possible to run it with the free version of Colab and the performance is much improved!
# webbigdata/ALMA-7B-Ja-V2
ALMA-7B-Ja-V2は日本語から英語、英語から日本語の翻訳が可能な機械翻訳モデルです。
The ALMA-7B-Ja-V2 is a machine translation model capable of translating from Japanese to English and English to Japanese.
ALMA-7B-Ja-V2は以前のモデル([ALMA-7B-Ja](https://huggingface.co/webbigdata/ALMA-7B-Ja))に更に学習を追加し、性能を向上しています。
The ALMA-7B-Ja-V2 adds further learning to the previous model ([ALMA-7B-Ja](https://huggingface.co/webbigdata/ALMA-7B-Ja)) and improves performance.
日本語と英語間に加えて、このモデルは以下の言語間の翻訳能力も持っていますが、日英、英日翻訳を主目的にしています。
In addition to translation between Japanese and English, this model also has the ability to translate between the following languages, but is primarily intended for Japanese-English and English-Japanese translation.
- ドイツ語 German(de) and 英語 English(en)
- 中国語 Chinese(zh) and 英語 English(en)
- アイスランド語 Icelandic(is) and 英語 English(en)
- チェコ語 Czech(cs) and 英語 English(en)
# ベンチマーク結果
以下の三種の指標を使って翻訳性能を確認しました。
The following three metrics were used to check translation performance.
数字が大きいほど性能が良い事を意味します。
The higher the number, the better the performance.
## BLEU
翻訳テキストが元のテキストにどれだけ似ているかを評価する指標です。しかし、単語の出現頻度だけを見ているため、語順の正確さや文の流暢さを十分に評価できないという弱点があります
A metric that evaluates how similar the translated text is to the original text. However, since it mainly looks at the frequency of word appearances, it may not effectively evaluate the accuracy of word order or the fluency of sentences.
### chrF++
文字の組み合わせの一致度と語順に基づいて、翻訳の正確さを評価する指標です。弱点としては、長い文章の評価には不向きであることが挙げられます。
A method to evaluate translation accuracy based on how well character combinations match and the order of words. A drawback is that it might not be suitable for evaluating longer sentences.
### comet
機械学習モデルを使って翻訳の品質を自動的に評価するためのツール、人間の主観的評価に近いと言われていますが、機械学習ベースであるため、元々のモデルが学習に使ったデータに大きく依存するという弱点があります。
A tool that uses machine learning models to automatically evaluate the quality of translations, although it is said to be similar to the evaluation ratings performed by humans. Because it is machine learning based, it has the weakness that the original model is highly dependent on the data used for training.
## vs. NLLB-200
Meta社の200言語以上の翻訳に対応した超多言語対応機械翻訳モデルNLLB-200シリーズと比較したベンチマーク結果は以下です。
Benchmark results compared to Meta's NLLB-200 series of super multilingual machine translation models, which support translations in over 200 languages, are shown below.
| Model Name | file size |E->J chrf++/F2|E->J comet|J->E chrf++/F2|J->E comet |
|------------------------------|-----------|--------------|----------|--------------|-----------|
| NLLB-200-Distilled | 2.46GB | 23.6/- | - | 50.2/- | - |
| NLLB-200-Distilled | 5.48GB | 25.4/- | - | 54.2/- | - |
| NLLB-200 | 5.48GB | 24.2/- | - | 53.6/- | - |
| NLLB-200 | 17.58GB | 25.2/- | - | 55.1/- | - |
| NLLB-200 | 220.18GB | 27.9/33.2 | 0.8908 | 55.8/59.8 | 0.8792 |
## previous our model(ALMA-7B-Ja)
| Model Name | file size |E->J chrf++/F2|E->J comet|J->E chrf++/F2|J->E comet |
|------------------------------|-----------|--------------|----------|--------------|-----------|
| webbigdata-ALMA-7B-Ja-q4_K_S | 3.6GB | -/24.2 | 0.8210 | -/54.2 | 0.8559 |
| ALMA-7B-Ja-GPTQ-Ja-En | 3.9GB | -/30.8 | 0.8743 | -/60.9 | 0.8743 |
| ALMA-Ja(Ours) | 13.48GB | -/31.8 | 0.8811 | -/61.6 | 0.8773 |
## ALMA-7B-Ja-V2
| Model Name | file size |E->J chrf++/F2|E->J comet|J->E chrf++/F2|J->E comet |
|------------------------------|-----------|--------------|----------|--------------|-----------|
| ALMA-7B-Ja-V2-GPTQ-Ja-En | 3.9GB | -/33.0 | 0.8818 | -/62.0 | 0.8774 |
| ALMA-Ja-V2(Ours) | 13.48GB | -/33.9 | 0.8820 | -/63.1 | 0.8873 |
| ALMA-Ja-V2-Lora(Ours) | 13.48GB | -/33.7 | 0.8843 | -/61.1 | 0.8775 |
ALMA-7B-Ja-V2を様々なジャンルの文章を現実世界のアプリケーションと比較した結果は以下です。
Here are the results of a comparison of various genres of writing with the actual application.
## 政府の公式文章 Government Official Announcements
| |e->j chrF2++|e->j BLEU|e->j comet|j->e chrF2++|j->e BLEU|j->e comet|
|--------------------------|------------|---------|----------|------------|---------|----------|
| ALMA-7B-Ja-V2-GPTQ-Ja-En | 25.3 | 15.00 | 0.8848 | 60.3 | 26.82 | 0.6189 |
| ALMA-Ja-V2 | 27.2 | 15.60 | 0.8868 | 58.5 | 29.27 | 0.6155 |
| ALMA-7B-Ja-V2-Lora | 24.5 | 13.58 | 0.8670 | 50.7 | 21.85 | 0.6196 |
| SeamlessM4T | 27.3 | 16.76 | 0.9070 | 54.2 | 25.76 | 0.5656 |
| gpt-3.5 | 34.6 | 28.33 | 0.8895 | 74.5 | 49.20 | 0.6382 |
| gpt-4.0 | 36.5 | 28.07 | 0.9255 | 62.5 | 33.63 | 0.6320 |
| google-translate | 43.5 | 35.37 | 0.9181 | 62.7 | 29.22 | 0.6446 |
| deepl | 43.5 | 35.74 | 0.9301 | 60.1 | 27.40 | 0.6389 |
## 古典文学 Classical Literature
| |e->j chrF2++|e->j BLEU|e->j comet|j->e chrF2++|j->e BLEU|j->e comet|
|--------------------------|------------|---------|----------|------------|---------|----------|
| ALMA-7B-Ja-V2-GPTQ-Ja-En | 11.8 | 7.24 | 0.6943 | 31.9 | 9.71 | 0.5617 |
| ALMA-Ja-V2 | 10.7 | 4.93 | 0.7202 | 32.9 | 10.52 | 0.5638 |
| ALMA-7B-Ja-V2-Lora | 12.3 | 7.25 | 0.7076 | 32.5 | 11.14 | 0.5441 |
| gpt-3.5 | - | - | 0.6367 | 69.3 | 46.34 | 0.4922 |
| gpt-4.0 | 13.3 | 8.33 | 0.7074 | 44.3 | 23.75 | 0.5518 |
| deepl | 14.4 | 9.18 | 0.7149 | 34.6 | 10.68 | 0.5787 |
| google-translate | 13.5 | 8.57 | 0.7432 | 31.7 | 7.94 | 0.5856 |
## 二次創作 Fanfiction
| |e->j chrF2++|e->j BLEU|e->j comet|j->e chrF2++|j->e BLEU|j->e comet|
|--------------------------|------------|---------|----------|------------|---------|----------|
| ALMA-7B-Ja-V2-GPTQ-Ja-En | 27.6 | 18.28 | 0.8643 | 52.1 | 24.58 | 0.6106 |
| ALMA-Ja-V2 | 20.4 | 8.45 | 0.7870 | 48.7 | 23.06 | 0.6050 |
| ALMA-7B-Ja-V2-Lora | 23.9 | 18.55 | 0.8634 | 55.6 | 29.91 | 0.6093 |
| SeamlessM4T | 25.5 | 19.97 | 0.8657 | 42.2 | 14.39 | 0.5554 |
| gpt-3.5 | 31.2 | 23.37 | 0.9001 | - | - | 0.5948 |
| gpt-4.0 | 30.7 | 24.31 | 0.8848 | 53.9 | 24.89 | 0.6163 |
| google-translate | 32.4 | 25.36 | 0.8968 | 58.5 | 29.88 | 0.6022 |
| deepl | 33.5 | 28.38 | 0.9094 | 60.0 | 31.14 | 0.6124 |
## サンプルコード sample code
Googleの無料WebツールであるColabを使うとALMA_7B_Ja_V2の性能を簡単に確かめる事ができます。
Using Colab, Google's free web tool, you can easily verify the performance of ALMA_7B_Ja_V2.
[Sample Code For Free Colab](https://github.com/webbigdata-jp/python_sample/blob/main/ALMA_7B_Ja_V2_Free_Colab_sample.ipynb)
## その他の版 Other Version
### llama.cpp
[llama.cpp](https://github.com/ggerganov/llama.cpp)の主な目的はMacBook上で4ビット整数量子化を使用して LLaMA モデルを実行する事です。
The main purpose of [llama.cpp](https://github.com/ggerganov/llama.cpp) is to run the LLaMA model using 4-bit integer quantization on a MacBook.
4ビット量子化に伴い、性能はやや低下しますが、mmngaさんが作成してくれた[webbigdata-ALMA-7B-Ja-V2-gguf](https://huggingface.co/mmnga/webbigdata-ALMA-7B-Ja-V2-gguf)を使うとMacやGPUを搭載していないWindows、Linuxで本モデルを動かす事ができます。
Although performance is somewhat reduced with 4-bit quantization, [webbigdata-ALMA-7B-Ja-V2-gguf](https://huggingface.co/mmnga/webbigdata-ALMA-7B-Ja-V2-gguf), created by mmnga, can be used to run this model on Mac, Windows and Linux without a GPU.
[GPU無版のColabで動かすサンプルはこちら](https://github.com/webbigdata-jp/python_sample/blob/main/ALMA_7B_Ja_V2_gguf_Free_Colab_sample.ipynb)です。
[Here is Colab(without GPU) sample code](https://github.com/webbigdata-jp/python_sample/blob/main/ALMA_7B_Ja_V2_gguf_Free_Colab_sample.ipynb).
### GPTQ
GPTQはモデルサイズを小さくする手法(量子化といいます)です。
GPTQ is a technique (called quantization) that reduces model size.
[ALMA-7B-Ja-V2-GPTQ-Ja-En](https://huggingface.co/webbigdata/ALMA-7B-Ja-V2-GPTQ-Ja-En)はGPTQ量子化版で、モデルサイズ(3.9GB)とメモリ使用量を削減し、速度を向上しています。
[ALMA-7B-Ja-V2-GPTQ-Ja-En](https://huggingface.co/webbigdata/ALMA-7B-Ja-V2-GPTQ-Ja-En) is a quantized GPTQ version, which reduces model size (3.9 GB) and memory usage and increases speed.
ただし、性能は少し落ちてしまいます。また、日本語と英語以外の言語への翻訳能力は著しく低下しているはずです。
However, performance is slightly reduced. Also, the ability to translate into languages other than Japanese and English should be significantly reduced.
[Sample Code For Free Colab webbigdata/ALMA-7B-Ja-V2-GPTQ-Ja-En](https://github.com/webbigdata-jp/python_sample/blob/master/ALMA_7B_Ja_V2_GPTQ_Ja_En_Free_Colab_sample.ipynb)
ファイル全体を一度に翻訳したい場合は、以下のColabをお試しください。
If you want to translate the entire txt file at once, try Colab below.
[ALMA_7B_Ja_GPTQ_Ja_En_batch_translation_sample](https://github.com/webbigdata-jp/python_sample/blob/master/ALMA_7B_Ja_V2_GPTQ_Ja_En_batch_translation_sample.ipynb)
**ALMA** (**A**dvanced **L**anguage **M**odel-based tr**A**nslator) is an LLM-based translation model, which adopts a new translation model paradigm: it begins with fine-tuning on monolingual data and is further optimized using high-quality parallel data. This two-step fine-tuning process ensures strong translation performance.
Please find more details in their [paper](https://arxiv.org/abs/2309.11674).
```
@misc{xu2023paradigm,
title={A Paradigm Shift in Machine Translation: Boosting Translation Performance of Large Language Models},
author={Haoran Xu and Young Jin Kim and Amr Sharaf and Hany Hassan Awadalla},
year={2023},
eprint={2309.11674},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
Original Model [ALMA-7B](https://huggingface.co/haoranxu/ALMA-7B). (26.95GB)
Prevous Model [ALMA-7B-Ja](https://huggingface.co/webbigdata/ALMA-7B-Ja). (13.3 GB)
## about this work
- **This work was done by :** [webbigdata](https://webbigdata.jp/post-21151/).
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_webbigdata__ALMA-7B-Ja-V2)
| Metric |Value|
|---------------------------------|----:|
|Avg. |47.85|
|AI2 Reasoning Challenge (25-Shot)|52.39|
|HellaSwag (10-Shot) |77.92|
|MMLU (5-Shot) |44.72|
|TruthfulQA (0-shot) |38.66|
|Winogrande (5-shot) |73.40|
|GSM8k (5-shot) | 0.00|
|