SentenceTransformer based on answerdotai/ModernBERT-base
This is a sentence-transformers model finetuned from answerdotai/ModernBERT-base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: answerdotai/ModernBERT-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'EHL tendon reconstruction',
'A Combined Surgical Approach for Extensor Hallucis Longus Reconstruction: Two Case Reports. ',
'Flexor tendon reconstruction. ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
triplet-dev
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.887 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 10,053 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 4 tokens
- mean: 8.86 tokens
- max: 34 tokens
- min: 4 tokens
- mean: 21.84 tokens
- max: 62 tokens
- min: 3 tokens
- mean: 13.65 tokens
- max: 50 tokens
- Samples:
anchor positive negative COM-induced secretome changes in U937 monocytes
Characterization of calcium oxalate crystal-induced changes in the secretome of U937 human monocytes.
Monocytes.
Metamaterials
Sound attenuation optimization using metaporous materials tuned on exceptional points.
Metamaterials: A cat's eye for all directions.
Pediatric Parasitology
Parasitic infections among school age children 6 to 11-years-of-age in the Eastern province.
[DIALOGUE ON PEDIATRIC PARASITOLOGY].
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64learning_rate
: 0.0002num_train_epochs
: 2lr_scheduler_type
: cosine_with_restartswarmup_ratio
: 0.1bf16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 0.0002weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: cosine_with_restartslr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | triplet-dev_cosine_accuracy |
---|---|---|---|
0 | 0 | - | 0.457 |
0.0189 | 1 | 5.2934 | - |
0.0377 | 2 | 5.2413 | - |
0.0566 | 3 | 4.9969 | - |
0.0755 | 4 | 4.5579 | - |
0.0943 | 5 | 3.9145 | - |
0.1132 | 6 | 3.3775 | - |
0.1321 | 7 | 2.8787 | - |
0.1509 | 8 | 3.0147 | - |
0.1698 | 9 | 2.7166 | - |
0.1887 | 10 | 2.7875 | - |
0.2075 | 11 | 2.3848 | - |
0.2264 | 12 | 2.1921 | - |
0.2453 | 13 | 1.7009 | - |
0.2642 | 14 | 1.7649 | - |
0.2830 | 15 | 1.7948 | - |
0.3019 | 16 | 1.5384 | - |
0.3208 | 17 | 1.6039 | - |
0.3396 | 18 | 1.3364 | - |
0.3585 | 19 | 1.3852 | - |
0.3774 | 20 | 1.2427 | - |
0.3962 | 21 | 1.3216 | - |
0.4151 | 22 | 1.4202 | - |
0.4340 | 23 | 1.2754 | - |
0.4528 | 24 | 1.281 | - |
0.4717 | 25 | 1.1709 | 0.815 |
0.4906 | 26 | 1.2363 | - |
0.5094 | 27 | 1.2169 | - |
0.5283 | 28 | 1.1495 | - |
0.5472 | 29 | 1.0066 | - |
0.5660 | 30 | 1.0478 | - |
0.5849 | 31 | 1.1511 | - |
0.6038 | 32 | 0.9992 | - |
0.6226 | 33 | 1.095 | - |
0.6415 | 34 | 1.1699 | - |
0.6604 | 35 | 0.9866 | - |
0.6792 | 36 | 1.1303 | - |
0.6981 | 37 | 1.1126 | - |
0.7170 | 38 | 0.889 | - |
0.7358 | 39 | 1.0355 | - |
0.7547 | 40 | 1.0129 | - |
0.7736 | 41 | 1.118 | - |
0.7925 | 42 | 0.8494 | - |
0.8113 | 43 | 1.0829 | - |
0.8302 | 44 | 0.8751 | - |
0.8491 | 45 | 0.8115 | - |
0.8679 | 46 | 0.8579 | - |
0.8868 | 47 | 1.1111 | - |
0.9057 | 48 | 0.9032 | - |
0.9245 | 49 | 1.0394 | - |
0.9434 | 50 | 0.9691 | 0.862 |
0.9623 | 51 | 1.023 | - |
0.9811 | 52 | 0.9465 | - |
1.0 | 53 | 0.6713 | - |
1.0189 | 54 | 0.9773 | - |
1.0377 | 55 | 0.8693 | - |
1.0566 | 56 | 0.7187 | - |
1.0755 | 57 | 0.805 | - |
1.0943 | 58 | 0.728 | - |
1.1132 | 59 | 1.0967 | - |
1.1321 | 60 | 0.7036 | - |
1.1509 | 61 | 0.8213 | - |
1.1698 | 62 | 0.57 | - |
1.1887 | 63 | 0.7006 | - |
1.2075 | 64 | 0.5091 | - |
1.2264 | 65 | 0.5758 | - |
1.2453 | 66 | 0.4484 | - |
1.2642 | 67 | 0.397 | - |
1.2830 | 68 | 0.6172 | - |
1.3019 | 69 | 0.513 | - |
1.3208 | 70 | 0.4447 | - |
1.3396 | 71 | 0.3205 | - |
1.3585 | 72 | 0.5881 | - |
1.3774 | 73 | 0.2543 | - |
1.3962 | 74 | 0.3648 | - |
1.4151 | 75 | 0.4849 | 0.876 |
1.4340 | 76 | 0.3455 | - |
1.4528 | 77 | 0.3424 | - |
1.4717 | 78 | 0.224 | - |
1.4906 | 79 | 0.18 | - |
1.5094 | 80 | 0.2255 | - |
1.5283 | 81 | 0.3024 | - |
1.5472 | 82 | 0.1835 | - |
1.5660 | 83 | 0.1946 | - |
1.5849 | 84 | 0.1958 | - |
1.6038 | 85 | 0.1568 | - |
1.6226 | 86 | 0.1626 | - |
1.6415 | 87 | 0.1774 | - |
1.6604 | 88 | 0.1934 | - |
1.6792 | 89 | 0.2426 | - |
1.6981 | 90 | 0.2958 | - |
1.7170 | 91 | 0.1606 | - |
1.7358 | 92 | 0.2281 | - |
1.7547 | 93 | 0.1786 | - |
1.7736 | 94 | 0.2241 | - |
1.7925 | 95 | 0.1909 | - |
1.8113 | 96 | 0.236 | - |
1.8302 | 97 | 0.1332 | - |
1.8491 | 98 | 0.1247 | - |
1.8679 | 99 | 0.156 | - |
1.8868 | 100 | 0.2152 | 0.889 |
1.9057 | 101 | 0.1549 | - |
1.9245 | 102 | 0.2226 | - |
1.9434 | 103 | 0.21 | - |
1.9623 | 104 | 0.2139 | - |
1.9811 | 105 | 0.1864 | - |
2.0 | 106 | 0.0719 | 0.887 |
Framework Versions
- Python: 3.12.3
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0.dev0
- PyTorch: 2.5.1
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 27
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for wwydmanski/modernbert-pubmed-v0.1
Base model
answerdotai/ModernBERT-base