wwydmanski's picture
Upload folder using huggingface_hub
b76c740 verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:10053
  - loss:MultipleNegativesRankingLoss
base_model: answerdotai/ModernBERT-base
widget:
  - source_sentence: Fluorescence quenching of tryptophan residues
    sentences:
      - 'Fluorescence of buried tyrosine residues in proteins. '
      - >-
        A fluorescence quenching study of tryptophanyl residues of (Ca2+ +
        Mg2+)-ATPase from sarcoplasmic reticulum. 
      - 'Some hormonal influences on the acetylation of sulfanilamide in vivo. '
  - source_sentence: Human migration to the Americas
    sentences:
      - >-
        Homo sapiens in the Americas. Overview of the earliest human expansion
        in the New World. 
      - >-
        Profiles of College Drinkers Defined by Alcohol Behaviors at the Week
        Level: Replication Across Semesters and Prospective Associations With
        Hazardous Drinking and Dependence-Related Symptoms. 
      - 'Human migration. '
  - source_sentence: Human Mobility Prediction
    sentences:
      - 'Human mobility prediction from region functions with taxi trajectories. '
      - 'Understanding Human Mobility from Twitter. '
      - >-
        Ovarian cancer gene therapy using HPV-16 pseudovirion carrying the
        HSV-tk gene. 
  - source_sentence: Nevirapine Resistance
    sentences:
      - 'Nevirapine toxicity. '
      - 'Recognizing rhenium. '
      - 'Update on nevirapine: quest for a niche. '
  - source_sentence: EHL tendon reconstruction
    sentences:
      - >-
        A Combined Surgical Approach for Extensor Hallucis Longus
        Reconstruction: Two Case Reports. 
      - 'Flexor tendon reconstruction. '
      - 'Noble gases and neuroprotection: summary of current evidence. '
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy
model-index:
  - name: SentenceTransformer based on answerdotai/ModernBERT-base
    results:
      - task:
          type: triplet
          name: Triplet
        dataset:
          name: triplet dev
          type: triplet-dev
        metrics:
          - type: cosine_accuracy
            value: 0.887
            name: Cosine Accuracy

SentenceTransformer based on answerdotai/ModernBERT-base

This is a sentence-transformers model finetuned from answerdotai/ModernBERT-base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: answerdotai/ModernBERT-base
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ModernBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'EHL tendon reconstruction',
    'A Combined Surgical Approach for Extensor Hallucis Longus Reconstruction: Two Case Reports. ',
    'Flexor tendon reconstruction. ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric Value
cosine_accuracy 0.887

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 10,053 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 4 tokens
    • mean: 8.86 tokens
    • max: 34 tokens
    • min: 4 tokens
    • mean: 21.84 tokens
    • max: 62 tokens
    • min: 3 tokens
    • mean: 13.65 tokens
    • max: 50 tokens
  • Samples:
    anchor positive negative
    COM-induced secretome changes in U937 monocytes Characterization of calcium oxalate crystal-induced changes in the secretome of U937 human monocytes. Monocytes.
    Metamaterials Sound attenuation optimization using metaporous materials tuned on exceptional points. Metamaterials: A cat's eye for all directions.
    Pediatric Parasitology Parasitic infections among school age children 6 to 11-years-of-age in the Eastern province. [DIALOGUE ON PEDIATRIC PARASITOLOGY].
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • learning_rate: 0.0002
  • num_train_epochs: 2
  • lr_scheduler_type: cosine_with_restarts
  • warmup_ratio: 0.1
  • bf16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 0.0002
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss triplet-dev_cosine_accuracy
0 0 - 0.457
0.0189 1 5.2934 -
0.0377 2 5.2413 -
0.0566 3 4.9969 -
0.0755 4 4.5579 -
0.0943 5 3.9145 -
0.1132 6 3.3775 -
0.1321 7 2.8787 -
0.1509 8 3.0147 -
0.1698 9 2.7166 -
0.1887 10 2.7875 -
0.2075 11 2.3848 -
0.2264 12 2.1921 -
0.2453 13 1.7009 -
0.2642 14 1.7649 -
0.2830 15 1.7948 -
0.3019 16 1.5384 -
0.3208 17 1.6039 -
0.3396 18 1.3364 -
0.3585 19 1.3852 -
0.3774 20 1.2427 -
0.3962 21 1.3216 -
0.4151 22 1.4202 -
0.4340 23 1.2754 -
0.4528 24 1.281 -
0.4717 25 1.1709 0.815
0.4906 26 1.2363 -
0.5094 27 1.2169 -
0.5283 28 1.1495 -
0.5472 29 1.0066 -
0.5660 30 1.0478 -
0.5849 31 1.1511 -
0.6038 32 0.9992 -
0.6226 33 1.095 -
0.6415 34 1.1699 -
0.6604 35 0.9866 -
0.6792 36 1.1303 -
0.6981 37 1.1126 -
0.7170 38 0.889 -
0.7358 39 1.0355 -
0.7547 40 1.0129 -
0.7736 41 1.118 -
0.7925 42 0.8494 -
0.8113 43 1.0829 -
0.8302 44 0.8751 -
0.8491 45 0.8115 -
0.8679 46 0.8579 -
0.8868 47 1.1111 -
0.9057 48 0.9032 -
0.9245 49 1.0394 -
0.9434 50 0.9691 0.862
0.9623 51 1.023 -
0.9811 52 0.9465 -
1.0 53 0.6713 -
1.0189 54 0.9773 -
1.0377 55 0.8693 -
1.0566 56 0.7187 -
1.0755 57 0.805 -
1.0943 58 0.728 -
1.1132 59 1.0967 -
1.1321 60 0.7036 -
1.1509 61 0.8213 -
1.1698 62 0.57 -
1.1887 63 0.7006 -
1.2075 64 0.5091 -
1.2264 65 0.5758 -
1.2453 66 0.4484 -
1.2642 67 0.397 -
1.2830 68 0.6172 -
1.3019 69 0.513 -
1.3208 70 0.4447 -
1.3396 71 0.3205 -
1.3585 72 0.5881 -
1.3774 73 0.2543 -
1.3962 74 0.3648 -
1.4151 75 0.4849 0.876
1.4340 76 0.3455 -
1.4528 77 0.3424 -
1.4717 78 0.224 -
1.4906 79 0.18 -
1.5094 80 0.2255 -
1.5283 81 0.3024 -
1.5472 82 0.1835 -
1.5660 83 0.1946 -
1.5849 84 0.1958 -
1.6038 85 0.1568 -
1.6226 86 0.1626 -
1.6415 87 0.1774 -
1.6604 88 0.1934 -
1.6792 89 0.2426 -
1.6981 90 0.2958 -
1.7170 91 0.1606 -
1.7358 92 0.2281 -
1.7547 93 0.1786 -
1.7736 94 0.2241 -
1.7925 95 0.1909 -
1.8113 96 0.236 -
1.8302 97 0.1332 -
1.8491 98 0.1247 -
1.8679 99 0.156 -
1.8868 100 0.2152 0.889
1.9057 101 0.1549 -
1.9245 102 0.2226 -
1.9434 103 0.21 -
1.9623 104 0.2139 -
1.9811 105 0.1864 -
2.0 106 0.0719 0.887

Framework Versions

  • Python: 3.12.3
  • Sentence Transformers: 3.3.1
  • Transformers: 4.48.0.dev0
  • PyTorch: 2.5.1
  • Accelerate: 1.2.1
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}