wwydmanski's picture
Update README.md
289dec3 verified
|
raw
history blame
17.7 kB
metadata
base_model: allenai/specter2_base
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - dot_accuracy
  - manhattan_accuracy
  - euclidean_accuracy
  - max_accuracy
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:10053
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: HBV-endemic area diagnostic criteria comparison
    sentences:
      - >-
        Comparison of usefulness of clinical diagnostic criteria for
        hepatocellular carcinoma in a hepatitis B endemic area. 
      - >-
        The validation of the 2010 American Association for the Study of Liver
        Diseases guideline for the diagnosis of hepatocellular carcinoma in an
        endemic area. 
      - >-
        Which admission electrocardiographic parameter is more powerful
        predictor of no-reflow in patients with acute anterior myocardial
        infarction who underwent primary percutaneous intervention? 
  - source_sentence: Family history of alcoholism classification schemes
    sentences:
      - 'Developing the mentor/protege relationship. '
      - 'Family history of alcoholism in schizophrenia. '
      - >-
        Family history models of alcoholism: age of onset, consequences and
        dependence. 
  - source_sentence: Intellectual Property Commercialization
    sentences:
      - >-
        ALEPH-2, a suspected anxiolytic and putative hallucinogenic
        phenylisopropylamine derivative, is a 5-HT2a and 5-HT2c receptor
        agonist. 
      - 'Technology transfer and monitoring practices. '
      - '[From intellectual property to commercial property]. '
  - source_sentence: Transmembrane domain mutants
    sentences:
      - >-
        Dysgerminoma; case with pulmonary metastases; result of treatment with
        irradiation and male sex hormone. 
      - >-
        Toward a high-resolution structure of phospholamban: design of soluble
        transmembrane domain mutants. 
      - 'Scanning N-glycosylation mutagenesis of membrane proteins. '
  - source_sentence: Six-coordinate low-spin iron(III) porphyrinate complexes
    sentences:
      - >-
        Molecular structures and magnetic resonance spectroscopic investigations
        of highly distorted six-coordinate low-spin iron(III) porphyrinate
        complexes. 
      - >-
        Saddle-shaped six-coordinate iron(iii) porphyrin complex with unusual
        intermediate-spin electronic structure. 
      - >-
        Performing Economic Evaluation of Integrated Care: Highway to Hell or
        Stairway to Heaven? 
model-index:
  - name: SentenceTransformer based on allenai/specter2_base
    results:
      - task:
          type: triplet
          name: Triplet
        dataset:
          name: triplet dev
          type: triplet-dev
        metrics:
          - type: cosine_accuracy
            value: 0.606
            name: Cosine Accuracy
          - type: dot_accuracy
            value: 0.395
            name: Dot Accuracy
          - type: manhattan_accuracy
            value: 0.603
            name: Manhattan Accuracy
          - type: euclidean_accuracy
            value: 0.615
            name: Euclidean Accuracy
          - type: max_accuracy
            value: 0.615
            name: Max Accuracy

SentenceTransformer based on allenai/specter2_base

This model is an initial proof of concept for (yet unpublished) article on ultra-hard negative triplet generation. While the original Specter2 adapters were trained on 600k triplets, only 10k ultra-hard negatives were enough to outperform the Proximity adapter.

Model Details

This is a sentence-transformers model finetuned from allenai/specter2_base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Description

  • Model Type: Sentence Transformer
  • Base model: allenai/specter2_base
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Six-coordinate low-spin iron(III) porphyrinate complexes',
    'Molecular structures and magnetic resonance spectroscopic investigations of highly distorted six-coordinate low-spin iron(III) porphyrinate complexes. ',
    'Saddle-shaped six-coordinate iron(iii) porphyrin complex with unusual intermediate-spin electronic structure. ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric Value
cosine_accuracy 0.606
dot_accuracy 0.395
manhattan_accuracy 0.603
euclidean_accuracy 0.615
max_accuracy 0.615

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 10,053 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 4 tokens
    • mean: 7.49 tokens
    • max: 18 tokens
    • min: 4 tokens
    • mean: 20.08 tokens
    • max: 48 tokens
    • min: 4 tokens
    • mean: 12.46 tokens
    • max: 48 tokens
  • Samples:
    anchor positive negative
    COM-induced secretome changes in U937 monocytes Characterization of calcium oxalate crystal-induced changes in the secretome of U937 human monocytes. Monocytes.
    Metamaterials Sound attenuation optimization using metaporous materials tuned on exceptional points. Metamaterials: A cat's eye for all directions.
    Pediatric Parasitology Parasitic infections among school age children 6 to 11-years-of-age in the Eastern province. [DIALOGUE ON PEDIATRIC PARASITOLOGY].
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • learning_rate: 2e-05
  • num_train_epochs: 6
  • lr_scheduler_type: cosine_with_restarts
  • warmup_ratio: 0.1
  • bf16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 6
  • max_steps: -1
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss triplet-dev_cosine_accuracy
0 0 - 0.373
0.1667 1 3.138 -
0.3333 2 2.9761 -
0.5 3 2.7135 -
0.6667 4 2.5144 -
0.8333 5 1.9797 -
1.0 6 1.2683 -
1.1667 7 1.6058 -
1.3333 8 1.3236 -
1.5 9 1.1134 -
1.6667 10 1.1205 -
1.8333 11 0.9369 -
2.0 12 0.6215 -
2.1667 13 1.0374 -
2.3333 14 0.9355 -
2.5 15 0.7118 -
2.6667 16 0.7967 -
2.8333 17 0.5739 -
3.0 18 0.4515 -
3.1667 19 0.8018 -
3.3333 20 0.6557 -
3.5 21 0.6027 -
3.6667 22 0.6747 -
3.8333 23 0.5013 -
4.0 24 0.1428 -
4.1667 25 0.5889 0.596
4.3333 26 0.5439 -
4.5 27 0.4742 -
4.6667 28 0.5734 -
4.8333 29 0.3966 -
5.0 30 0.1793 -
5.1667 31 0.5408 -
5.3333 32 0.5174 -
5.5 33 0.4179 -
5.6667 34 0.4589 -
5.8333 35 0.3683 -
6.0 36 0.1442 0.606

Framework Versions

  • Python: 3.9.19
  • Sentence Transformers: 3.1.1
  • Transformers: 4.45.2
  • PyTorch: 2.5.0
  • Accelerate: 1.0.1
  • Datasets: 2.19.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}