metadata
base_model: allenai/specter2_base
library_name: sentence-transformers
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:10053
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: HBV-endemic area diagnostic criteria comparison
sentences:
- >-
Comparison of usefulness of clinical diagnostic criteria for
hepatocellular carcinoma in a hepatitis B endemic area.
- >-
The validation of the 2010 American Association for the Study of Liver
Diseases guideline for the diagnosis of hepatocellular carcinoma in an
endemic area.
- >-
Which admission electrocardiographic parameter is more powerful
predictor of no-reflow in patients with acute anterior myocardial
infarction who underwent primary percutaneous intervention?
- source_sentence: Family history of alcoholism classification schemes
sentences:
- 'Developing the mentor/protege relationship. '
- 'Family history of alcoholism in schizophrenia. '
- >-
Family history models of alcoholism: age of onset, consequences and
dependence.
- source_sentence: Intellectual Property Commercialization
sentences:
- >-
ALEPH-2, a suspected anxiolytic and putative hallucinogenic
phenylisopropylamine derivative, is a 5-HT2a and 5-HT2c receptor
agonist.
- 'Technology transfer and monitoring practices. '
- '[From intellectual property to commercial property]. '
- source_sentence: Transmembrane domain mutants
sentences:
- >-
Dysgerminoma; case with pulmonary metastases; result of treatment with
irradiation and male sex hormone.
- >-
Toward a high-resolution structure of phospholamban: design of soluble
transmembrane domain mutants.
- 'Scanning N-glycosylation mutagenesis of membrane proteins. '
- source_sentence: Six-coordinate low-spin iron(III) porphyrinate complexes
sentences:
- >-
Molecular structures and magnetic resonance spectroscopic investigations
of highly distorted six-coordinate low-spin iron(III) porphyrinate
complexes.
- >-
Saddle-shaped six-coordinate iron(iii) porphyrin complex with unusual
intermediate-spin electronic structure.
- >-
Performing Economic Evaluation of Integrated Care: Highway to Hell or
Stairway to Heaven?
model-index:
- name: SentenceTransformer based on allenai/specter2_base
results:
- task:
type: triplet
name: Triplet
dataset:
name: triplet dev
type: triplet-dev
metrics:
- type: cosine_accuracy
value: 0.606
name: Cosine Accuracy
- type: dot_accuracy
value: 0.395
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.603
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.615
name: Euclidean Accuracy
- type: max_accuracy
value: 0.615
name: Max Accuracy
SentenceTransformer based on allenai/specter2_base
This model is an initial proof of concept for (yet unpublished) article on ultra-hard negative triplet generation. While the original Specter2 adapters were trained on 600k triplets, only 10k ultra-hard, self-supervised negatives were enough to outperform the Proximity adapter (85 vs 84.1 avg NDCG over Relish, NFCorpus, TREC CoVID).
Model Details
This is a sentence-transformers model finetuned from allenai/specter2_base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Description
- Model Type: Sentence Transformer
- Base model: allenai/specter2_base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Six-coordinate low-spin iron(III) porphyrinate complexes',
'Molecular structures and magnetic resonance spectroscopic investigations of highly distorted six-coordinate low-spin iron(III) porphyrinate complexes. ',
'Saddle-shaped six-coordinate iron(iii) porphyrin complex with unusual intermediate-spin electronic structure. ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
triplet-dev
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.606 |
dot_accuracy | 0.395 |
manhattan_accuracy | 0.603 |
euclidean_accuracy | 0.615 |
max_accuracy | 0.615 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 10,053 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 4 tokens
- mean: 7.49 tokens
- max: 18 tokens
- min: 4 tokens
- mean: 20.08 tokens
- max: 48 tokens
- min: 4 tokens
- mean: 12.46 tokens
- max: 48 tokens
- Samples:
anchor positive negative COM-induced secretome changes in U937 monocytes
Characterization of calcium oxalate crystal-induced changes in the secretome of U937 human monocytes.
Monocytes.
Metamaterials
Sound attenuation optimization using metaporous materials tuned on exceptional points.
Metamaterials: A cat's eye for all directions.
Pediatric Parasitology
Parasitic infections among school age children 6 to 11-years-of-age in the Eastern province.
[DIALOGUE ON PEDIATRIC PARASITOLOGY].
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32learning_rate
: 2e-05num_train_epochs
: 6lr_scheduler_type
: cosine_with_restartswarmup_ratio
: 0.1bf16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 6max_steps
: -1lr_scheduler_type
: cosine_with_restartslr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | triplet-dev_cosine_accuracy |
---|---|---|---|
0 | 0 | - | 0.373 |
0.1667 | 1 | 3.138 | - |
0.3333 | 2 | 2.9761 | - |
0.5 | 3 | 2.7135 | - |
0.6667 | 4 | 2.5144 | - |
0.8333 | 5 | 1.9797 | - |
1.0 | 6 | 1.2683 | - |
1.1667 | 7 | 1.6058 | - |
1.3333 | 8 | 1.3236 | - |
1.5 | 9 | 1.1134 | - |
1.6667 | 10 | 1.1205 | - |
1.8333 | 11 | 0.9369 | - |
2.0 | 12 | 0.6215 | - |
2.1667 | 13 | 1.0374 | - |
2.3333 | 14 | 0.9355 | - |
2.5 | 15 | 0.7118 | - |
2.6667 | 16 | 0.7967 | - |
2.8333 | 17 | 0.5739 | - |
3.0 | 18 | 0.4515 | - |
3.1667 | 19 | 0.8018 | - |
3.3333 | 20 | 0.6557 | - |
3.5 | 21 | 0.6027 | - |
3.6667 | 22 | 0.6747 | - |
3.8333 | 23 | 0.5013 | - |
4.0 | 24 | 0.1428 | - |
4.1667 | 25 | 0.5889 | 0.596 |
4.3333 | 26 | 0.5439 | - |
4.5 | 27 | 0.4742 | - |
4.6667 | 28 | 0.5734 | - |
4.8333 | 29 | 0.3966 | - |
5.0 | 30 | 0.1793 | - |
5.1667 | 31 | 0.5408 | - |
5.3333 | 32 | 0.5174 | - |
5.5 | 33 | 0.4179 | - |
5.6667 | 34 | 0.4589 | - |
5.8333 | 35 | 0.3683 | - |
6.0 | 36 | 0.1442 | 0.606 |
Framework Versions
- Python: 3.9.19
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.5.0
- Accelerate: 1.0.1
- Datasets: 2.19.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}