|
--- |
|
base_model: allenai/specter2_base |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy |
|
- dot_accuracy |
|
- manhattan_accuracy |
|
- euclidean_accuracy |
|
- max_accuracy |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:10053 |
|
- loss:MultipleNegativesRankingLoss |
|
widget: |
|
- source_sentence: HBV-endemic area diagnostic criteria comparison |
|
sentences: |
|
- 'Comparison of usefulness of clinical diagnostic criteria for hepatocellular carcinoma |
|
in a hepatitis B endemic area. ' |
|
- 'The validation of the 2010 American Association for the Study of Liver Diseases |
|
guideline for the diagnosis of hepatocellular carcinoma in an endemic area. ' |
|
- 'Which admission electrocardiographic parameter is more powerful predictor of |
|
no-reflow in patients with acute anterior myocardial infarction who underwent |
|
primary percutaneous intervention? ' |
|
- source_sentence: Family history of alcoholism classification schemes |
|
sentences: |
|
- 'Developing the mentor/protege relationship. ' |
|
- 'Family history of alcoholism in schizophrenia. ' |
|
- 'Family history models of alcoholism: age of onset, consequences and dependence. ' |
|
- source_sentence: Intellectual Property Commercialization |
|
sentences: |
|
- 'ALEPH-2, a suspected anxiolytic and putative hallucinogenic phenylisopropylamine |
|
derivative, is a 5-HT2a and 5-HT2c receptor agonist. ' |
|
- 'Technology transfer and monitoring practices. ' |
|
- '[From intellectual property to commercial property]. ' |
|
- source_sentence: Transmembrane domain mutants |
|
sentences: |
|
- 'Dysgerminoma; case with pulmonary metastases; result of treatment with irradiation |
|
and male sex hormone. ' |
|
- 'Toward a high-resolution structure of phospholamban: design of soluble transmembrane |
|
domain mutants. ' |
|
- 'Scanning N-glycosylation mutagenesis of membrane proteins. ' |
|
- source_sentence: Six-coordinate low-spin iron(III) porphyrinate complexes |
|
sentences: |
|
- 'Molecular structures and magnetic resonance spectroscopic investigations of highly |
|
distorted six-coordinate low-spin iron(III) porphyrinate complexes. ' |
|
- 'Saddle-shaped six-coordinate iron(iii) porphyrin complex with unusual intermediate-spin |
|
electronic structure. ' |
|
- 'Performing Economic Evaluation of Integrated Care: Highway to Hell or Stairway |
|
to Heaven? ' |
|
model-index: |
|
- name: SentenceTransformer based on allenai/specter2_base |
|
results: |
|
- task: |
|
type: triplet |
|
name: Triplet |
|
dataset: |
|
name: triplet dev |
|
type: triplet-dev |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 0.606 |
|
name: Cosine Accuracy |
|
- type: dot_accuracy |
|
value: 0.395 |
|
name: Dot Accuracy |
|
- type: manhattan_accuracy |
|
value: 0.603 |
|
name: Manhattan Accuracy |
|
- type: euclidean_accuracy |
|
value: 0.615 |
|
name: Euclidean Accuracy |
|
- type: max_accuracy |
|
value: 0.615 |
|
name: Max Accuracy |
|
--- |
|
|
|
# SentenceTransformer based on allenai/specter2_base |
|
|
|
This model is an initial proof of concept for (yet unpublished) article on ultra-hard negative triplet generation. While the original Specter2 adapters were trained on 600k triplets, only 10k ultra-hard, self-supervised negatives were enough to outperform the Proximity adapter (85 vs 84.1 avg NDCG over Relish, NFCorpus, TREC CoVID). |
|
|
|
|
|
## Model Details |
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [allenai/specter2_base](https://huggingface.co/allenai/specter2_base) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [allenai/specter2_base](https://huggingface.co/allenai/specter2_base) <!-- at revision 3447645e1def9117997203454fa4495937bfbd83 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- json |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("sentence_transformers_model_id") |
|
# Run inference |
|
sentences = [ |
|
'Six-coordinate low-spin iron(III) porphyrinate complexes', |
|
'Molecular structures and magnetic resonance spectroscopic investigations of highly distorted six-coordinate low-spin iron(III) porphyrinate complexes. ', |
|
'Saddle-shaped six-coordinate iron(iii) porphyrin complex with unusual intermediate-spin electronic structure. ', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Triplet |
|
* Dataset: `triplet-dev` |
|
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:----------| |
|
| **cosine_accuracy** | **0.606** | |
|
| dot_accuracy | 0.395 | |
|
| manhattan_accuracy | 0.603 | |
|
| euclidean_accuracy | 0.615 | |
|
| max_accuracy | 0.615 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### json |
|
|
|
* Dataset: json |
|
* Size: 10,053 training samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 7.49 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 20.08 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 12.46 tokens</li><li>max: 48 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:-------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------| |
|
| <code>COM-induced secretome changes in U937 monocytes</code> | <code>Characterization of calcium oxalate crystal-induced changes in the secretome of U937 human monocytes. </code> | <code>Monocytes. </code> | |
|
| <code>Metamaterials</code> | <code>Sound attenuation optimization using metaporous materials tuned on exceptional points. </code> | <code>Metamaterials: A cat's eye for all directions. </code> | |
|
| <code>Pediatric Parasitology</code> | <code>Parasitic infections among school age children 6 to 11-years-of-age in the Eastern province. </code> | <code>[DIALOGUE ON PEDIATRIC PARASITOLOGY]. </code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 32 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 6 |
|
- `lr_scheduler_type`: cosine_with_restarts |
|
- `warmup_ratio`: 0.1 |
|
- `bf16`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 32 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 6 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: cosine_with_restarts |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: True |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | triplet-dev_cosine_accuracy | |
|
|:------:|:----:|:-------------:|:---------------------------:| |
|
| 0 | 0 | - | 0.373 | |
|
| 0.1667 | 1 | 3.138 | - | |
|
| 0.3333 | 2 | 2.9761 | - | |
|
| 0.5 | 3 | 2.7135 | - | |
|
| 0.6667 | 4 | 2.5144 | - | |
|
| 0.8333 | 5 | 1.9797 | - | |
|
| 1.0 | 6 | 1.2683 | - | |
|
| 1.1667 | 7 | 1.6058 | - | |
|
| 1.3333 | 8 | 1.3236 | - | |
|
| 1.5 | 9 | 1.1134 | - | |
|
| 1.6667 | 10 | 1.1205 | - | |
|
| 1.8333 | 11 | 0.9369 | - | |
|
| 2.0 | 12 | 0.6215 | - | |
|
| 2.1667 | 13 | 1.0374 | - | |
|
| 2.3333 | 14 | 0.9355 | - | |
|
| 2.5 | 15 | 0.7118 | - | |
|
| 2.6667 | 16 | 0.7967 | - | |
|
| 2.8333 | 17 | 0.5739 | - | |
|
| 3.0 | 18 | 0.4515 | - | |
|
| 3.1667 | 19 | 0.8018 | - | |
|
| 3.3333 | 20 | 0.6557 | - | |
|
| 3.5 | 21 | 0.6027 | - | |
|
| 3.6667 | 22 | 0.6747 | - | |
|
| 3.8333 | 23 | 0.5013 | - | |
|
| 4.0 | 24 | 0.1428 | - | |
|
| 4.1667 | 25 | 0.5889 | 0.596 | |
|
| 4.3333 | 26 | 0.5439 | - | |
|
| 4.5 | 27 | 0.4742 | - | |
|
| 4.6667 | 28 | 0.5734 | - | |
|
| 4.8333 | 29 | 0.3966 | - | |
|
| 5.0 | 30 | 0.1793 | - | |
|
| 5.1667 | 31 | 0.5408 | - | |
|
| 5.3333 | 32 | 0.5174 | - | |
|
| 5.5 | 33 | 0.4179 | - | |
|
| 5.6667 | 34 | 0.4589 | - | |
|
| 5.8333 | 35 | 0.3683 | - | |
|
| 6.0 | 36 | 0.1442 | 0.606 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.9.19 |
|
- Sentence Transformers: 3.1.1 |
|
- Transformers: 4.45.2 |
|
- PyTorch: 2.5.0 |
|
- Accelerate: 1.0.1 |
|
- Datasets: 2.19.0 |
|
- Tokenizers: 0.20.3 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |