metadata
language:
- multilingual
license: apache-2.0
base_model: openai/whisper-medium
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: model trenovan na en_de_en simi setu, nastaveni jazyka en overeni3
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: odpovidajici nazvu modelu
type: mozilla-foundation/common_voice_11_0
args: 'config: ende, split: train'
metrics:
- name: Wer
type: wer
value: 31.315296008572197
model trenovan na en_de_en simi setu, nastaveni jazyka en overeni3
This model is a fine-tuned version of openai/whisper-medium on the odpovidajici nazvu modelu dataset. It achieves the following results on the evaluation set:
- Loss: 0.2841
- Wer: 31.3153
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Framework versions
- Transformers 4.37.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2