|
--- |
|
license: mit |
|
base_model: google/vivit-b-16x2-kinetics400 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: vivit-b-16x2-kinetics400-CAER-SAMPLE |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# vivit-b-16x2-kinetics400-CAER-SAMPLE |
|
|
|
This model is a fine-tuned version of [google/vivit-b-16x2-kinetics400](https://huggingface.co/google/vivit-b-16x2-kinetics400) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.9485 |
|
- Accuracy: 0.2427 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- training_steps: 2100 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 2.4781 | 0.09 | 196 | 1.8166 | 0.2439 | |
|
| 2.0142 | 1.09 | 392 | 2.2946 | 0.1951 | |
|
| 1.2947 | 2.09 | 588 | 1.6998 | 0.3659 | |
|
| 0.8486 | 3.09 | 784 | 2.0369 | 0.2195 | |
|
| 0.2636 | 4.09 | 980 | 1.9748 | 0.3171 | |
|
| 0.2805 | 5.09 | 1176 | 2.3563 | 0.3659 | |
|
| 0.0923 | 6.09 | 1372 | 2.3754 | 0.3659 | |
|
| 0.1543 | 7.09 | 1568 | 2.7737 | 0.3171 | |
|
| 0.0387 | 8.09 | 1764 | 2.6676 | 0.3659 | |
|
| 0.0101 | 9.09 | 1960 | 2.7895 | 0.3415 | |
|
| 0.0662 | 10.07 | 2100 | 2.7728 | 0.3415 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.1.0 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|