yottan-wywy's picture
Update README.md
c330b72 verified
|
raw
history blame
3.01 kB
---
library_name: transformers
datasets:
- elyza/ELYZA-tasks-100
license: apache-2.0
language:
- ja
base_model:
- llm-jp/llm-jp-3-13b-instruct
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Required Libraries and Their Versions
- trl==0.12.2
- transformers<4.47.0
- tokenizers==0.21.0
- bitsandbytes==0.45.0
- peft==0.14.0
- datasets==3.2.0
## Usage
Google Colaboratory(L4 GPU)にて実行
```py
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
TrainingArguments,
logging,
)
from peft import (
LoraConfig,
PeftModel,
get_peft_model,
)
import os, torch, gc, json
from tqdm import tqdm
from datasets import load_dataset
import bitsandbytes as bnb
from trl import SFTTrainer
from google.colab import userdata
# Hugging Face Token
os.environ["HF_TOKEN"] = userdata.get("HF_TOKEN")
```
```py
# 推論データ準備
datasets = []
inference_data_path = '/content/drive/MyDrive/your_path'
with open(f"{inference_data_path}/elyza-tasks-100-TV_0.jsonl", "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
# モデルとトークナイザー準備
new_model_id = "yottan-wywy/llm-jp-3-13b-instruct-finetune_1217"
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
model = AutoModelForCausalLM.from_pretrained(
new_model_id,
quantization_config=bnb_config,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(new_model_id, trust_remote_code=True)
```
```py
# 推論実行
results = []
system_text = "以下は、タスクを説明する指示です。要求を適切に満たす回答を**簡潔に**書きなさい。"
for data in tqdm(datasets):
input_text = data["input"]
prompt = f"""
{system_text}
### 指示
{input_text}
### 応答
"""
tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
attention_mask = torch.ones_like(tokenized_input)
with torch.no_grad():
outputs = model.generate(
tokenized_input,
attention_mask=attention_mask,
max_new_tokens=100,
do_sample=False,
repetition_penalty=1.2,
pad_token_id=tokenizer.eos_token_id
)[0]
output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
results.append({"task_id": data["task_id"], "input": input_text, "output": output})
```
## Model Details
- **Model type:** Transformer-based Language Model
## Datasets
### Instruction tuning
| Language | Dataset | description |
|:---|:---|:---|
|Japanese|[elyza/ELYZA-tasks-100](https://huggingface.co/datasets/elyza/ELYZA-tasks-100)| A manually constructed instruction dataset |
## License
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)