youlun77's picture
update model card README.md
e1744ff
|
raw
history blame
9.2 kB
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - recall
  - precision
  - f1
model-index:
  - name: DistilBERT-TC2000-10epochs
    results: []

DistilBERT-TC2000-10epochs

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0752
  • Recall: {'recall': 0.98}
  • Precision: {'precision': 0.9803145941921073}
  • F1: {'f1': 0.9800242537313432}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Recall Precision F1
1.0272 0.18 20 0.8815 {'recall': 0.65} {'precision': 0.7778791777580597} {'f1': 0.6251215862860073}
0.8663 0.35 40 0.6770 {'recall': 0.905} {'precision': 0.9120308312976535} {'f1': 0.9054010850819201}
0.6016 0.53 60 0.4088 {'recall': 0.92} {'precision': 0.9238949736347314} {'f1': 0.9207242314918276}
0.3139 0.71 80 0.2508 {'recall': 0.93} {'precision': 0.9322386382325532} {'f1': 0.929768888773222}
0.2645 0.88 100 0.2048 {'recall': 0.955} {'precision': 0.958280303030303} {'f1': 0.954923196771023}
0.1811 1.06 120 0.1446 {'recall': 0.965} {'precision': 0.9675925925925927} {'f1': 0.9648852158183796}
0.1429 1.24 140 0.1245 {'recall': 0.975} {'precision': 0.9762354497354496} {'f1': 0.9749193929610656}
0.0941 1.42 160 0.1338 {'recall': 0.965} {'precision': 0.9683561643835616} {'f1': 0.9652805623632961}
0.1242 1.59 180 0.0872 {'recall': 0.975} {'precision': 0.9759505494505496} {'f1': 0.9750344590666455}
0.0893 1.77 200 0.0572 {'recall': 0.985} {'precision': 0.9853867102396515} {'f1': 0.9849564819176908}
0.0477 1.95 220 0.0794 {'recall': 0.975} {'precision': 0.9762354497354496} {'f1': 0.9749193929610656}
0.0128 2.12 240 0.0697 {'recall': 0.98} {'precision': 0.9807447665056361} {'f1': 0.9799368665956859}
0.0449 2.3 260 0.0635 {'recall': 0.97} {'precision': 0.9725} {'f1': 0.9702302752172594}
0.0996 2.48 280 0.0782 {'recall': 0.97} {'precision': 0.9725} {'f1': 0.9700752508361203}
0.0328 2.65 300 0.0127 {'recall': 0.995} {'precision': 0.995060975609756} {'f1': 0.9949962534538471}
0.0747 2.83 320 0.0380 {'recall': 0.975} {'precision': 0.9767605633802816} {'f1': 0.9751792302987906}
0.0413 3.01 340 0.0127 {'recall': 1.0} {'precision': 1.0} {'f1': 1.0}
0.0404 3.19 360 0.0120 {'recall': 0.995} {'precision': 0.995060975609756} {'f1': 0.9949915278995033}
0.0226 3.36 380 0.0085 {'recall': 1.0} {'precision': 1.0} {'f1': 1.0}
0.0543 3.54 400 0.0139 {'recall': 0.995} {'precision': 0.9950925925925926} {'f1': 0.9950042805165157}
0.0528 3.72 420 0.0408 {'recall': 0.985} {'precision': 0.9856521739130435} {'f1': 0.9850251572327045}
0.0051 3.89 440 0.0808 {'recall': 0.97} {'precision': 0.9725} {'f1': 0.9702302752172594}
0.014 4.07 460 0.0419 {'recall': 0.985} {'precision': 0.985241846323936} {'f1': 0.985017255463425}
0.051 4.25 480 0.0127 {'recall': 0.995} {'precision': 0.9950925925925926} {'f1': 0.9950042805165157}
0.0501 4.42 500 0.0200 {'recall': 0.985} {'precision': 0.9850867537313434} {'f1': 0.985009807126512}
0.0062 4.6 520 0.0247 {'recall': 0.985} {'precision': 0.985241846323936} {'f1': 0.985017255463425}
0.0118 4.78 540 0.0614 {'recall': 0.975} {'precision': 0.975962157809984} {'f1': 0.975047977706797}
0.0348 4.96 560 0.0516 {'recall': 0.98} {'precision': 0.9803145941921073} {'f1': 0.9800242537313432}
0.0226 5.13 580 0.0144 {'recall': 0.995} {'precision': 0.995060975609756} {'f1': 0.9949962534538471}
0.0159 5.31 600 0.0129 {'recall': 0.995} {'precision': 0.995060975609756} {'f1': 0.9949962534538471}
0.0026 5.49 620 0.0176 {'recall': 0.995} {'precision': 0.995060975609756} {'f1': 0.9949962534538471}
0.016 5.66 640 0.0404 {'recall': 0.98} {'precision': 0.9803145941921073} {'f1': 0.9800242537313432}
0.0433 5.84 660 0.0663 {'recall': 0.975} {'precision': 0.9756772575250836} {'f1': 0.975041928721174}
0.0354 6.02 680 0.0253 {'recall': 0.995} {'precision': 0.995060975609756} {'f1': 0.9949962534538471}
0.0041 6.19 700 0.0961 {'recall': 0.97} {'precision': 0.9711688311688311} {'f1': 0.9700614296351452}
0.0579 6.37 720 0.1336 {'recall': 0.965} {'precision': 0.966783728687917} {'f1': 0.9650813612906225}
0.0025 6.55 740 0.0424 {'recall': 0.98} {'precision': 0.9803145941921073} {'f1': 0.9800242537313432}
0.0328 6.73 760 0.0190 {'recall': 0.995} {'precision': 0.995060975609756} {'f1': 0.9949962534538471}
0.0217 6.9 780 0.0488 {'recall': 0.98} {'precision': 0.9803145941921073} {'f1': 0.9800242537313432}
0.0096 7.08 800 0.1115 {'recall': 0.97} {'precision': 0.9711688311688311} {'f1': 0.9700614296351452}
0.0106 7.26 820 0.0673 {'recall': 0.98} {'precision': 0.9803145941921073} {'f1': 0.9800242537313432}
0.0077 7.43 840 0.0354 {'recall': 0.985} {'precision': 0.9850867537313434} {'f1': 0.985009807126512}
0.0222 7.61 860 0.0410 {'recall': 0.98} {'precision': 0.9803145941921073} {'f1': 0.9800242537313432}
0.0026 7.79 880 0.0590 {'recall': 0.98} {'precision': 0.9803145941921073} {'f1': 0.9800242537313432}
0.0576 7.96 900 0.0596 {'recall': 0.98} {'precision': 0.9803145941921073} {'f1': 0.9800242537313432}
0.018 8.14 920 0.0428 {'recall': 0.985} {'precision': 0.9850867537313434} {'f1': 0.985009807126512}
0.027 8.32 940 0.0425 {'recall': 0.985} {'precision': 0.9850867537313434} {'f1': 0.985009807126512}
0.036 8.5 960 0.0341 {'recall': 0.985} {'precision': 0.9850867537313434} {'f1': 0.985009807126512}
0.0094 8.67 980 0.0457 {'recall': 0.98} {'precision': 0.9803145941921073} {'f1': 0.9800242537313432}
0.0192 8.85 1000 0.0586 {'recall': 0.98} {'precision': 0.9803145941921073} {'f1': 0.9800242537313432}
0.03 9.03 1020 0.0789 {'recall': 0.98} {'precision': 0.9803145941921073} {'f1': 0.9800242537313432}
0.0091 9.2 1040 0.0691 {'recall': 0.98} {'precision': 0.9803145941921073} {'f1': 0.9800242537313432}
0.0197 9.38 1060 0.0753 {'recall': 0.98} {'precision': 0.9803145941921073} {'f1': 0.9800242537313432}
0.0025 9.56 1080 0.0796 {'recall': 0.975} {'precision': 0.9756772575250836} {'f1': 0.975041928721174}
0.0414 9.73 1100 0.0791 {'recall': 0.98} {'precision': 0.9803145941921073} {'f1': 0.9800242537313432}
0.0075 9.91 1120 0.0756 {'recall': 0.98} {'precision': 0.9803145941921073} {'f1': 0.9800242537313432}

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.1
  • Tokenizers 0.13.3